
Suman Mukhopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ruthenium(<scp>ii</scp>)–arene complexes as anti-metastatic agents, and related techniques. RSC Medicinal Chemistry, 2022, 13, 22-38.	3.9	27
2	Synthesis of Cu(II) complexes by N,Oâ€donor ligand transformation and their catalytic role in visibleâ€lightâ€driven alcohol oxidation. Applied Organometallic Chemistry, 2022, 36, e6450.	3.5	6
3	Pyrene-based fluorescent Ru(<scp>ii</scp>)-arene complexes for significant biological applications: catalytic potential, DNA/protein binding, two photon cell imaging and <i>in vitro</i> cytotoxicity. Dalton Transactions, 2022, 51, 3937-3953.	3.3	14
4	Cancer-Targeted Chitosan–Biotin-Conjugated Mesoporous Silica Nanoparticles as Carriers of Zinc Complexes to Achieve Enhanced Chemotherapy <i>In Vitro</i> and <i>In Vivo</i> . ACS Applied Bio Materials, 2022, 5, 190-204.	4.6	14
5	Unveiling the urease like intrinsic catalytic activities of two dinuclear nickel complexes towards the <i>i>in situ</i> syntheses of aminocyanopyridines. Dalton Transactions, 2021, 50, 4848-4858.	3.3	7
6	In vitro evaluation of cytotoxicity and antimetastatic properties of novel arene ruthenium(II)â€ŧetrazolato compounds on human cancer cell lines. Applied Organometallic Chemistry, 2021, 35, e6187.	3.5	6
7	Specific Loading and In Vitro Controlled Release of a Ru-Based Hydrophobically Encapsulated Model Anticancer Drug inside Nanoassemblies toward Stimuli-Responsive Drug Delivery. ACS Applied Nano Materials, 2021, 4, 2037-2051.	5.0	10
8	Selective anticancer activities of ruthenium(II)-tetrazole complexes and their mechanistic insights. BioMetals, 2021, 34, 795-812.	4.1	6
9	Modulation of catalytic and biomolecular binding properties of ruthenium(II)-arene complexes with the variation of coligands for selective toxicity against cancerous cells. Polyhedron, 2021, 207, 115379.	2.2	14
10	Target based chemotherapeutic advancement of ruthenium complexes. Coordination Chemistry Reviews, 2021, 448, 214169.	18.8	46
11	A new approach to study of TiB2-TiN-SiC based tribological coatings with solid lubrication. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	1.3	1
12	Preparation of Tris-Tetrazole-Based Metallogels and Stabilization of Silver Nanoparticles: Studies on Reduction Catalysis and Self-Healing Property. ACS Applied Materials & Interfaces, 2021, 13, 59567-59579.	8.0	15
13	Coligand driven efficiency of catecholase activity and proteins binding study of redox active copper complexes. Inorganica Chimica Acta, 2020, 502, 119389.	2.4	4
14	Effect of hBN and SiC addition on laser assisted processing of ceramic matrix composite coatings. Ceramics International, 2020, 46, 9758-9764.	4.8	9
15	Arene-ruthenium(II)-phosphine complexes: Green catalysts for hydration of nitriles under mild conditions. Inorganic Chemistry Communication, 2020, 112, 107698.	3.9	9
16	Studies on the influence of the nuclearity of zinc(<scp>ii</scp>) hemi-salen complexes on some pivotal biological applications. Dalton Transactions, 2020, 49, 15481-15503.	3.3	32
17	Aminoâ€Acidâ€Đerived Emerging Sensor for Detection of S 2â^' Ion and MeOH Percentage in MeOHâ€H 2 O Mixture. ChemistrySelect, 2020, 5, 12835-12842.	1.5	2
18	Role of zeolite encapsulated Cu(II) complexes in electron transfer as well as peroxy radical intermediates formation during oxidation of thioanisole. Journal of Catalysis, 2020, 389, 305-316.	6.2	18

#	Article	IF	CITATIONS
19	Mechanistic Insight for Targeting Biomolecules by Ruthenium(II) NSAID Complexes. ACS Applied Bio Materials, 2020, 3, 4600-4612.	4.6	11
20	Ruthenium(II)-arene complexes containing ferrocenamide ligands: Synthesis, characterisation and antiproliferative activity against cancer cell lines. Journal of Organometallic Chemistry, 2020, 916, 121247.	1.8	8
21	Comparative study on the tribological properties of laser post-treated and untreated AISI304 stainless steel matrix composite reinforced with hard ceramic particles (TiB2–TiN–SiC) and prepared by ex-situ P/M route. Ceramics International, 2019, 45, 18852-18864.	4.8	12
22	Mechanistic and thermodynamic aspects of a pyrene-based fluorescent probe to detect picric acid. New Journal of Chemistry, 2019, 43, 11483-11492.	2.8	27
23	Efficient oxidation of benzene catalyzed by Cu(II) tetrazolato complexes under mild conditions. Inorganic Chemistry Communication, 2019, 105, 217-220.	3.9	14
24	Cobalt Metallogel Interface for Selectively Sensing <scp>l</scp> -Tryptophan among Essential Amino Acids. Inorganic Chemistry, 2019, 58, 7324-7334.	4.0	41
25	Mannich base Cu(II) complexes as biomimetic oxidative catalyst. Journal of Inorganic Biochemistry, 2019, 195, 164-173.	3.5	16
26	An amide probe as a selective Al ³⁺ and Fe ³⁺ sensor inside the HeLa and a549 cell lines: Pictet–Spengler reaction for the rapid detection of tryptophan amino acid. New Journal of Chemistry, 2019, 43, 4867-4877.	2.8	23
27	Novel Approach to Generate a Self-Deliverable Ru(II)-Based Anticancer Agent in the Self-Reacting Confined Gel Space. ACS Applied Materials & Interfaces, 2019, 11, 47606-47618.	8.0	19
28	Self-Healable Lanthanoid-Based Metallogels: Dye Removal and Crystallization in the Confined Gel State. ACS Applied Nano Materials, 2019, 2, 8005-8015.	5.0	18
29	Substituent dependent sensing behavior of Schiff base chemosensors in detecting Zn2+and Al3+ ions: Drug sample analysis and living cell imaging. Sensors and Actuators B: Chemical, 2019, 282, 347-358.	7.8	84
30	Enhanced pseudo-halide promoted corrosion inhibition by biologically active zinc(II) Schiff base complexes. Chemical Engineering Journal, 2019, 357, 447-457.	12.7	30
31	Investigation on chemical protease, nuclease and catecholase activity of two copper complexes with flexidentate Schiff base ligands. Inorganica Chimica Acta, 2018, 469, 111-122.	2.4	30
32	Ruthenium(<scp>ii</scp>) arene NSAID complexes: inhibition of cyclooxygenase and antiproliferative activity against cancer cell lines. Dalton Transactions, 2018, 47, 517-527.	3.3	66
33	RAPTA complexes containing Nâ€substituted Tetrazole scaffolds: Synthesis, characterization and Antiproliferative activity. Applied Organometallic Chemistry, 2018, 32, e4179.	3.5	8
34	Analysis of instrumented scratch hardness and fracture toughness properties of laser surface alloyed tribological coatings. Ceramics International, 2018, 44, 4248-4255.	4.8	23
35	Discotic Organic Gelators in Ion Sensing, Metallogel Formation, and Bioinspired Catalysis. Langmuir, 2018, 34, 11575-11585.	3.5	47
36	Zeolite encapsulated host-guest Cu(II) Schiff base complexes: Superior activity towards oxidation reactions over homogenous catalytic systems. Microporous and Mesoporous Materials, 2018, 271, 100-117.	4.4	37

#	Article	IF	CITATIONS
37	Evaluation of nanomechanical and tribological properties of laser surface alloyed boride-nitride-carbide ceramic matrix composite coatings. Ceramics International, 2018, 44, 17050-17061.	4.8	14
38	Nickel tetrazolato complexes synthesized by microwave irradiation: Catecholase like activity and interaction with biomolecules. Journal of Coordination Chemistry, 2017, 70, 261-278.	2.2	13
39	Copper(II) tetrazolato complexes: Role in oxidation catalysis and protein binding. Polyhedron, 2017, 132, 53-63.	2.2	24
40	Targeted synthesis of cadmium(<scp>ii</scp>) Schiff base complexes towards corrosion inhibition on mild steel. RSC Advances, 2017, 7, 48569-48585.	3.6	44
41	A smart organic gel template as metal cation and inorganic anion sensor. Soft Matter, 2017, 13, 6243-6249.	2.7	30
42	Effect on catecholase activity and interaction with biomolecules of metal complexes containing differently tuned 5-substituted ancillary tetrazolato ligands. Polyhedron, 2017, 121, 155-171.	2.2	6
43	Copper complexes with a flexible piperazinyl arm: nuclearity driven catecholase activity and interactions with biomolecules. Journal of Coordination Chemistry, 2016, 69, 3619-3637.	2.2	11
44	Fine tuning through valence bond tautomerization of ancillary ligands in ruthenium(<scp>ii</scp>) arene complexes for better anticancer activity and enzyme inhibition properties. Dalton Transactions, 2016, 45, 19277-19289.	3.3	10
45	Greener Selective Cycloalkane Oxidations with Hydrogen Peroxide Catalyzed by Copper-5-(4-pyridyl)tetrazolate Metal-Organic Frameworks. Molecules, 2015, 20, 19203-19220.	3.8	22
46	Nanoparticles silica anchored Cu(II) and V(IV) scorpionate complexes for selective catalysis of cyclohexane oxidation. Journal of Molecular Catalysis A, 2015, 400, 139-146.	4.8	21
47	Rapamycin-induced G1 cell cycle arrest employs both TGF-β and Rb pathways. Cancer Letters, 2015, 360, 134-140.	7.2	54
48	Polymer encapsulated scorpionate Eu3+ complexes as novel hybrid materials for high performance luminescence applications. RSC Advances, 2015, 5, 35675-35682.	3.6	13
49	Targeted water soluble copper–tetrazolate complexes: interactions with biomolecules and catecholase like activities. Dalton Transactions, 2015, 44, 20154-20167.	3.3	44
50	Nickel(<scp>ii</scp>) complexes with a flexible piperazinyl moiety: studies on DNA and protein binding and catecholase like properties. Dalton Transactions, 2015, 44, 2299-2310.	3.3	90
51	Copper–organic frameworks assembled from in situ generated 5-(4-pyridyl)tetrazole building blocks: synthesis, structural features, topological analysis and catalytic oxidation of alcohols. Dalton Transactions, 2014, 43, 9944-9954.	3.3	70
52	Limiting nuclearity in formation of polynuclear metal complexes through [2 + 3] cycloaddition: synthesis and magnetic properties of tri- and pentanuclear metal complexes. Dalton Transactions, 2014, 43, 8083-8093.	3.3	13
53	The effect of remote substitution on the formation of preferential isomers of cobalt(<scp>iii</scp>)-tetrazolate complexes by microwave assisted cycloaddition. Inorganic Chemistry Frontiers, 2014, 1, 599-610.	6.0	8
54	Ruthenium(II)–Arene RAPTA Type Complexes Containing Curcumin and Bisdemethoxycurcumin Display Potent and Selective Anticancer Activity. Organometallics, 2014, 33, 3709-3715.	2.3	162

#	Article	IF	CITATIONS
55	Microwave synthesis of mono- and bis-tetrazolato complexes via 1,3-dipolar cycloaddition of organonitriles with nickel(II)-bound azides: Isolation of 5-substituted tetrazoles from parent complex. Polyhedron, 2013, 55, 24-36.	2.2	25
56	Coordination complexes based on 4-aminobenzonitrile with different dimensionalities. Journal of Coordination Chemistry, 2013, 66, 1602-1615.	2.2	1
57	The effect of remote substitution on formation of preferential geometrical isomer of cobalt(III)–tetrazolato complexes formed via [2+3] cycloaddition. Inorganic Chemistry Communication, 2013, 34, 62-67.	3.9	10
58	Novel alkoxysilane pentacoordinate OV(IV) complexes as supported catalysts for cyclohexane oxidation with dioxygen. Applied Catalysis A: General, 2010, 384, 136-146.	4.3	20
59	Synthesis of mono- and bis-tetrazolato complexes of Ni(II), Pt(II) and Cu(II) via 1,3-dipolar cycloadditions of 2-cyanopyridines with metal ligated azides in N,N,O-aminoiminophenolato complexes. Dalton Transactions, 2009, , 4778.	3.3	25
60	PdII-promoted [2 + 3] cycloaddition of pyrroline N-oxide to organonitriles. Application of (Δ4-1,2,4-oxadiazoline)-PdII complexes in the Suzuki–Miyaura reaction. Dalton Transactions, 2009, , 2210.	3.3	33
61	Efficient regioselective synthesis of 4―and 5â€substituted isoxazoles under thermal and microwave conditions. Journal of Heterocyclic Chemistry, 2008, 45, 1385-1389.	2.6	21
62	Activation of C–CN bond of propionitrile: An alternative route to the syntheses of 5-substituted-1H-tetrazoles and dicyano-platinum(II) species. Polyhedron, 2008, 27, 2883-2888.	2.2	39
63	New water-soluble azido- and derived tetrazolato-platinum(ii) complexes with PTA. Easy metal-mediated synthesis and isolation of 5-substituted tetrazoles. Dalton Transactions, 2008, , 6546.	3.3	45
64	Pt ^{II} -Promoted [2 + 3] Cycloaddition of Azide to Cyanopyridines: Convenient Tool toward Heterometallic Structures. Inorganic Chemistry, 2008, 47, 11334-11341.	4.0	28
65	Microwave synthesis of mono- and bis-tetrazolato complexes via 1,3-dipolar cycloaddition of organonitriles with platinum(ii)-bound azides. Dalton Transactions, 2007, , 5297.	3.3	49
66	<i>trans</i> -Bis[5-(4-fluorophenyl)tetrazolato]bis(triphenylphosphine)platinum(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2656-m2656.	0.2	5
67	Bi- and Trinuclear Copper(II) Complexes of a Sterically Constrained Phenol-Based Tetradentate Ligand:Â Syntheses, Structures, and Magnetic Studies. Inorganic Chemistry, 2004, 43, 8501-8509.	4.0	63
68	Honeycomb Nets with Interpenetrating Frameworks Involving Iminodiacetatoâ^'Copper(II) Blocks and Bipyridine Spacers:Â Syntheses, Characterization, and Magnetic Studies. Inorganic Chemistry, 2004, 43, 3413-3420.	4.0	68
69	Adduct Formation between Alkali Metal Ions and Anionic LVVO2-(L2-= Tridentate ONS Ligands) Species:Â Syntheses, Structural Investigation, and Photochemical Studiesâ€. Inorganic Chemistry, 2003, 42, 6284-6293.	4.0	19
70	Oxovanadium(IV) and -(V) Complexes of Dithiocarbazate-Based Tridentate Schiff Base Ligands: Syntheses, Structure, and Photochemical Reactivity of Compounds Involving Imidazole Derivatives as Coligands. Inorganic Chemistry, 2003, 42, 1508-1517.	4.0	57
71	Mixed-Spin Binuclear Nickel(II) Complexes in Unsymmetrical Ligand Environments and Related Mononuclear Compounds:Â Electronic and Molecular Structures in Solution and in the Solid State. Inorganic Chemistry, 2003, 42, 7189-7199.	4.0	19
72	Equilibrium Studies in Solution Involving Nickel(II) Complexes of Flexidentate Schiff Base Ligands:Â Isolation and Structural Characterization of the Planar Red and Octahedral Green Species Involved in the Equilibrium. Inorganic Chemistry, 2003, 42, 8439-8445.	4.0	64

#	Article	IF	CITATIONS
73	Synthesis, Characterization, and Reactivity of Mononuclear O,N-Chelated Vanadium(IV) and -(III) Complexes of Methyl 2-Aminocyclopent-1-ene-1-dithiocarboxylate Based Ligand:  Reporting an Example of Conformational Isomerism in the Solid State. Inorganic Chemistry, 2002, 41, 2433-2440.	4.0	40
74	Spontaneous Assembly of a Polymeric Helicate of Sodium with LVO2Units Forming the Strand: Photoinduced Transformation into a Mixed-Valence Product. Inorganic Chemistry, 2002, 41, 2946-2952.	4.0	23
75	Syntheses, structure and properties of cobalt-(II) and -(III) complexes of pentadentate N4S ligands with appended pyrazolyl groups: evidence for cobalt(II)–dioxygen reversible binding. Dalton Transactions RSC, 2000, , 4677-4682.	2.3	8