Matty Janssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA. Journal of Industrial Ecology, 2018, 22, 1286-1294.	5.5	272
2	Review of methodological choices in <scp>LCA</scp> of biorefinery systems ―key issues and recommendations. Biofuels, Bioproducts and Biorefining, 2015, 9, 606-619.	3.7	91
3	Prospective study of lignin-based and recycled carbon fibers in composites through meta-analysis of life cycle assessments. Journal of Cleaner Production, 2019, 223, 946-956.	9.3	49
4	Allocation in life cycle assessment of lignin. International Journal of Life Cycle Assessment, 2020, 25, 1620-1632.	4.7	40
5	Energy use and climate change improvements of Li/S batteries based on life cycle assessment. Journal of Power Sources, 2018, 383, 87-92.	7.8	33
6	Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw. Bioresource Technology, 2014, 173, 148-158.	9.6	30
7	Ethylene based on woody biomass—what are environmental key issues of a possible future Swedish production on industrial scale. International Journal of Life Cycle Assessment, 2013, 18, 1071-1081.	4.7	29
8	LifeÂcycle impacts of ethanol production from spruce wood chips under high-gravity conditions. Biotechnology for Biofuels, 2016, 9, 53.	6.2	27
9	Toward a sustainable biorefinery using highâ€gravity technology. Biofuels, Bioproducts and Biorefining, 2017, 11, 15-27.	3.7	27
10	Prospective life cycle assessment of bio-based adipic acid production from forest residues. Journal of Cleaner Production, 2017, 164, 434-443.	9.3	26
11	Mapping and testing circular economy product-level indicators: A critical review. Resources, Conservation and Recycling, 2022, 178, 106080.	10.8	25
12	Life cycle assessment of bio-based sodium polyacrylate production from pulp mill side streams: case study of thermo-mechanical and sulfite pulp mills. Journal of Cleaner Production, 2016, 131, 475-484.	9.3	23
13	Successful partnerships for the forest biorefinery. Industrial Biotechnology, 2008, 4, 352-362.	0.8	17
14	Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling. Energies, 2022, 15, 3999.	3.1	16
15	Systematic assessment of triticaleâ€based biorefinery strategies: investment decisions for sustainable biorefinery business models. Biofuels, Bioproducts and Biorefining, 2018, 12, S9.	3.7	14
16	Can carbon fiber composites have a lower environmental impact than fiberglass?. Resources, Conservation and Recycling, 2022, 181, 106234.	10.8	14
17	Allocation in recycling of compositesÂ-Âthe case of life cycle assessment of products from carbon fiber composites. International Journal of Life Cycle Assessment, 2022, 27, 419-432.	4.7	13
18	Accounting for effects of carbon flows in LCA of biomass-based products—exploration and evaluation of a selection of existing methods. International Journal of Life Cycle Assessment, 2018, 23, 2110-2125.	4.7	12

MATTY JANSSEN

#	Article	IF	CITATIONS
19	Multi-Scale Variability Analysis of Wheat Straw-Based Ethanol Biorefineries Identifies Bioprocess Designs Robust Against Process Input Variations. Frontiers in Energy Research, 2020, 8, .	2.3	5
20	Early design-stage biorefinery process selection. Tappi Journal, 2012, 11, 9-16.	0.5	4
21	Design and Early Development of a MOOC on "Sustainability in Everyday Life― Role of the Teachers. World Sustainability Series, 2016, , 113-123.	0.4	4
22	A Swedish comment on â€~review: the availability of life-cycle studies in Sweden'. International Journal of Life Cycle Assessment, 2019, 24, 1758-1759.	4.7	2
23	Combined basic and fine chemical biorefinery concepts with integration of processes at different technology readiness levels. Computer Aided Chemical Engineering, 2018, 43, 1577-1582.	0.5	0