
Philipp Vana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493970/publications.pdf Version: 2024-02-01

Ομιιίος Μλιλ

6

#	Article	IF	CITATIONS
1	Efficacy of occlusive wraps used for delivery room care. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 645-647.	2.8	1
2	Gold nanoparticle ring arrays from core–satellite nanostructures made to order by hydrogen bond interactions. Nanoscale Advances, 2022, 4, 2787-2793.	4.6	2
3	Elucidating the Topology and Physical Properties of Triblock Copolymers Using Ion Mobility Mass Spectrometry. Macromolecular Chemistry and Physics, 2021, 222, 2000317.	2.2	2
4	Tuning the Mechanical Properties of Poly(Methyl Acrylate) via Surfaceâ€Functionalized Montmorillonite Nanosheets. Macromolecular Materials and Engineering, 2021, 306, 2000595.	3.6	5
5	Near-Infrared-Triggered Photothermal Aggregation of Polymer-Grafted Gold Nanorods in a Simulated Blood Fluid. Biomacromolecules, 2021, 22, 1614-1624.	5.4	7
6	Enhancing the Mechanical Properties of Matrixâ€Free Poly(Methyl Acrylate)â€Grafted Montmorillonite Nanosheets by Introducing Star Polymers and Hydrogen Bonding Moieties. Macromolecular Materials and Engineering, 2021, 306, 2100054.	3.6	2
7	Macroscalar Helices Coâ€Assembled from Chiralityâ€Transferring Temperatureâ€Responsive Carbohydrateâ€Based Bolaamphiphiles and 1,4â€Benzenediboronic Acid. Angewandte Chemie - International Edition, 2021, 60, 9712-9718.	13.8	10
8	Self-Compounded Nanocomposites: toward Multifunctional Membranes with Superior Mechanical, Gas/Oil Barrier, UV-Shielding, and Photothermal Conversion Properties. ACS Applied Materials & Interfaces, 2021, 13, 28668-28678.	8.0	7
9	Hydroplastic polymers as eco-friendly hydrosetting plastics. Nature Sustainability, 2021, 4, 877-883.	23.7	63
10	Increasing the Gas Barrier Properties of Polyethylene Foils by Coating with Poly(methyl) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf 4.5	50 ₅ 382 Td (a
11	Refining Reactivity Ratios in the Copolymerization of Styrene and Methyl Methacrylate by EasySpin/MATLAB Simulations and Electron Paramagnetic Resonance Spectroscopy. Macromolecular Theory and Simulations, 2021, 30, 2100048.	1.4	3
12	Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polymer Chemistry, 2021, 12, 6198-6229.	3.9	17
13	Mannosylated fluorescent celluloseâ€based glycopolymers for stable uniform nanoparticles. Journal of Polymer Science, 2021, 59, 170-181.	3.8	2
14	Investigation into the Kinetics of <i>n</i> â€Pentyl Methacrylate Radical Polymerization. Macromolecular Chemistry and Physics, 2020, 221, 1900345.	2.2	7
15	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69

16	Prediction of Kinetically Stable Nanotheranostic Superstructures: Integral of First-Passage Times from Constrained Simulations. Biomacromolecules, 2020, 21, 5008-5020.	5.4	4
17	Mesoporous-silica-coated palladium-nanocubes as recyclable nanocatalyst in C–C-coupling reaction – a green approach. RSC Advances, 2020, 10, 26504-26507.	3.6	4

18Controlled Arrangement of Gold Nanoparticles on Planar Surfaces via Constrained Dewetting of
Surface-Grafted RAFT Polymer. Polymers, 2020, 12, 1214.4.5

#	Article	IF	CITATIONS
19	Supramolecular Selfâ€Assembly of β 3 â€Peptides Mediated by Janusâ€Type Recognition Units. Chemistry - A European Journal, 2020, 26, 12145-12149.	3.3	2
20	Copper(I)â€catalyzed azideâ€alkyne cycloadditionâ€assisted polymerization of linear glucoseâ€derived co/polymers. Journal of Polymer Science, 2020, 58, 1535-1543.	3.8	5
21	Intelligent CO ₂ - and photo-dual-responsive polymer vesicles with tunable wall thickness. Polymer Chemistry, 2019, 10, 1610-1618.	3.9	9
22	Palladium-Catalyzed 4-Fold Domino Reaction for the Synthesis of a Polymeric Double Switch. Organic Letters, 2018, 20, 2007-2010.	4.6	4
23	Cationic End-Functional Polyethylene via Catalyzed Chain Growth: Synthesis, Mass Spectrometry, and Applications. Macromolecules, 2018, 51, 8469-8476.	4.8	3
24	Surface Modification of Wood Flour via ARGET ATRP and Its Application as Filler in Thermoplastics. Polymers, 2018, 10, 354.	4.5	7
25	Polyethylene-Grafted Gold and Silver Nanoparticles Using Catalyzed Chain Growth (CCG). Polymers, 2018, 10, 407.	4.5	8
26	Silicaâ€Coated Magnetite Nanoparticles Carrying a Highâ€Density Polymer Brush Shell of Hydrophilic Polymer. Macromolecular Rapid Communications, 2018, 39, e1800226.	3.9	15
27	The Kinetics of Surfaceâ€Initiated RAFT Polymerization of Butyl acrylate Mediated by Trithiocarbonates. Macromolecular Chemistry and Physics, 2017, 218, 1600506.	2.2	5
28	Uniform Distance Scaling Behavior of Planet–Satellite Nanostructures Made by Star Polymers. Langmuir, 2017, 33, 2017-2026.	3.5	28
29	Tuning the Mechanical Properties of Multiblock Copolymers Generated by Polyfunctional RAFT Agents. Macromolecular Materials and Engineering, 2017, 302, 1700018.	3.6	5
30	Thermoreversible Selfâ€Assembly of Perfluorinated Coreâ€Coronas Celluloseâ€Nanoparticles in Dry State. Advanced Materials, 2017, 29, 1702473.	21.0	19
31	Stimulus-Responsive Planet–Satellite Nanostructures as Colloidal Actuators: Reversible Contraction and Expansion of the Planet–Satellite Distance. Macromolecules, 2017, 50, 7344-7350.	4.8	25
32	Obtaining the Dielectric Constant of Polymers from Doubly Charged Species in Ion-Mobility Mass Spectrometry. Macromolecular Chemistry and Physics, 2017, 218, 1700126.	2.2	10
33	Thermosensitive Cationâ€Selective Mesochannels: PNIPAMâ€Capped Mesoporous Thin Films as Bioinspired Interfacial Architectures with Concerted Functions. Chemistry - A European Journal, 2017, 23, 14500-14506.	3.3	23
34	Easy Access to the Characteristic Ratio of Polymers Using Ionâ€Mobility Mass Spectrometry. Macromolecular Chemistry and Physics, 2017, 218, 1600373.	2.2	15
35	Polystyrene ore–Silica‧hell Hybrid Particles Containing Gold and Magnetic Nanoparticles. Chemistry - an Asian Journal, 2016, 11, 596-603.	3.3	1
36	Light-induced self-assembly of gold nanoparticles with a photoresponsive polymer shell. Polymer, 2016, 107, 503-508.	3.8	20

#	Article	IF	CITATIONS
37	Functionalization of Planet–Satellite Nanostructures Revealed by Nanoscopic Localization of Distinct Macromolecular Species. Macromolecular Rapid Communications, 2016, 37, 1742-1747.	3.9	17
38	Chain-length-dependent impact of band broadening on the molar-mass determination of synthetic polymers via size-exclusion chromatography. Journal of Chromatography A, 2016, 1458, 35-45.	3.7	0
39	Polymeric Flaky Nanostructures from Cellulose Stearoyl Esters for Functional Surfaces. Advanced Materials Interfaces, 2016, 3, 1600636.	3.7	6
40	Gold-Planet–Silver-Satellite Nanostructures Using RAFT Star Polymer. ACS Macro Letters, 2016, 5, 1227-1231.	4.8	28
41	Diffusion of single molecular and macromolecular probes during the free radical bulk polymerization of MMA – towards a better understanding of the Trommsdorff effect on a molecular level. Polymer Chemistry, 2016, 7, 4100-4105.	3.9	22
42	Confinement of phonon propagation in laser deposited tungsten/polycarbonate multilayers. New Journal of Physics, 2016, 18, 092002.	2.9	12
43	Biomimetic triblock and multiblock copolymers containing <scp>l</scp> â€Phenylalanine moieties showing healing and enhanced mechanical properties. Journal of Polymer Science Part A, 2015, 53, 2809-2819.	2.3	23
44	Tailoring Confinement: Nano-Carrier Synthesis via Z-RAFT Star Polymerization. Polymers, 2015, 7, 695-716.	4.5	5
45	Nanocomposites and Self-Assembled Structures via Controlled Radical Polymerization. Advances in Polymer Science, 2015, , 193-220.	0.8	7
46	Termination Kinetics of Surface-Initiated Radical Polymerization Measured by Time-Resolved ESR Spectroscopy after Laser-Pulse Initiation. Macromolecules, 2015, 48, 3190-3196.	4.8	6
47	Increasing the Tackiness of Statistical Poly(Butyl Acrylate) and Poly(Ethyl Acrylate) Network Materials via RAFT Polymerization. Macromolecular Materials and Engineering, 2015, 300, 551-561.	3.6	2
48	Modeling of Catalyzed Chain Growth (CCG) Polymerization of Styrene-d 8 using Cp*2 ZrCl2 and Dibenzylmagnesium. Macromolecular Theory and Simulations, 2015, 24, 232-247.	1.4	3
49	The Structure of Gold-Nanoparticle Networks Cross-Linked by Di- and Multifunctional RAFT Oligomers. Langmuir, 2015, 31, 10573-10582.	3.5	15
50	Design Strategies for the Fabrication of Tailored Nanocomposites via RAFT Polymerization. ACS Symposium Series, 2015, , 293-307.	0.5	5
51	Comparison of monomethoxyâ€, dimethoxyâ€, and trimethoxysilane anchor groups for surfaceâ€initiated <scp>RAFT</scp> polymerization from silica surfaces. Journal of Polymer Science Part A, 2015, 53, 103-113.	2.3	19
52	Titin-mimicking polycyclic polymers with shape regeneration and healing properties. Polymer Chemistry, 2015, 6, 1714-1726.	3.9	13
53	The Influence of RAFT on the Microstructure and the Mechanical Properties of Photopolymerized Poly(butyl acrylate) Networks. Macromolecular Chemistry and Physics, 2014, 215, 182-189.	2.2	29
54	Planet–Satellite Nanostructures Made To Order by RAFT Star Polymers. Angewandte Chemie - International Edition, 2014, 53, 12639-12642.	13.8	48

#	Article	IF	CITATIONS
55	A Kinetic Investigation of the Initialization of Catalyzed Chain Growth of Styrene: The Reaction of Cp* ₂ ZrCl ₂ with Dibenzylmagnesium. Macromolecular Chemistry and Physics, 2014, 215, 544-554.	2.2	2
56	Stabilizing the Microphase Separation of Block Copolymers by Controlled Photoâ€crosslinking. Macromolecular Chemistry and Physics, 2014, 215, 1563-1572.	2.2	15
57	Flipping the Pressure- and Temperature-Dependent Cloud-Point Behavior in the Cononsolvency System of Poly(<i>N</i> -isopropylacrylamide) in Water and Ethanol. Macromolecules, 2014, 47, 1462-1469.	4.8	34
58	UV Light as External Switch and Boost of Molar-Mass Control in Iodine-Mediated Polymerization. Macromolecules, 2014, 47, 954-963.	4.8	65
59	RAFT-Polymers with Single and Multiple Trithiocarbonate Groups as Uniform Gold-Nanoparticle Coatings. Macromolecules, 2013, 46, 4862-4871.	4.8	98
60	Spherical Gold-Nanoparticle Assemblies with Tunable Interparticle Distances Mediated by Multifunctional RAFT Polymers. ACS Macro Letters, 2013, 2, 1073-1076.	4.8	35
61	Photocrosslinkable Star Polymers via RAFT-Copolymerizations with N-Ethylacrylate-3,4-dimethylmaleimide. Polymers, 2013, 5, 706-729.	4.5	11
62	Insights into the Ringâ€Expansion Polymerization of Thiiranes with 2,4â€Thiazolidinedione. Macromolecular Chemistry and Physics, 2013, 214, 1484-1495.	2.2	16
63	UV-induced [2+2]-cycloaddition for shell-formation of star polymers. , 2012, , .		0
64	Functional Binary Micropattern of Hyperbranched Poly(ether amine) (hPEA-AN) Network and Poly(ether amine) (PEA) Brush for Recognition of Guest Molecules. Biomacromolecules, 2012, 13, 535-541.	5.4	13
65	One-Pot RAFT/"Click―Chemistry via Isocyanates: Efficient Synthesis of α-End-Functionalized Polymers. Journal of the American Chemical Society, 2012, 134, 12596-12603.	13.7	97
66	Flexible Microdomain Specific Staining of Block Copolymers for 3D Optical Nanoscopy. Macromolecules, 2011, 44, 7508-7510.	4.8	23
67	EPR Measurement of Fragmentation Kinetics in Dithiobenzoate-Mediated RAFT Polymerization. Macromolecules, 2011, 44, 2474-2480.	4.8	53
68	<i>H</i> â€Phosphonic Acid Derivatives as Catalysts for Reversible Chain Transfer Catalyzed Polymerization (RTCP) at Ambient and High Pressure. Macromolecular Chemistry and Physics, 2011, 212, 259-265.	2.2	10
69	On the Mechanism of the Ringâ€Expansion Polymerization of Thiiranes. Macromolecular Chemistry and Physics, 2011, 212, 1263-1275.	2.2	10
70	The Impact of Band Broadening on Molarâ€Mass Determination of Narrowâ€Distribution Polymer by Sizeâ€Exclusion Chromatography. Macromolecular Theory and Simulations, 2011, 20, 667-674.	1.4	14
71	Multiblock Copolymers of Styrene and Butyl Acrylate via Polytrithiocarbonate-Mediated RAFT Polymerization. Polymers, 2011, 3, 719-739.	4.5	29
72	Hardening of smooth pulsed laser deposited PMMA films byÂheating. Applied Physics A: Materials Science and Processing, 2010, 98, 711-715.	2.3	12

#	Article	IF	CITATIONS
73	Electrochemically Induced RAFT Polymerization of Thermoresponsive Hydrogel Films: Impact on Film Thickness and Surface Morphology. Macromolecular Chemistry and Physics, 2010, 211, 761-767.	2.2	25
74	Relaxation Processes of Poly(<i>tert</i> â€butyl acrylate) Chemically Confined via Hydrogen Bonds. Macromolecular Chemistry and Physics, 2010, 211, 1673-1677.	2.2	10
75	Kinetic Simulations of Reversible Chain Transfer Catalyzed Polymerization (RTCP): Guidelines to Optimum Molecular Weight Control. Macromolecular Theory and Simulations, 2010, 19, 24-35.	1.4	28
76	Shielding effects in polymer–polymer reactions, 3. Z-RAFT star polymerization under various solvent conditions. Polymer, 2010, 51, 5122-5134.	3.8	19
77	RAFT/MADIX rate coefficients measured via time-resolved EPR spectroscopy after pulse laser initiation. Polymer, 2010, 51, 5977-5982.	3.8	23
78	Easy Access to the RAFT Equilibrium Constant. Macromolecules, 2010, 43, 51-54.	4.8	28
79	Ideal Molecular Weight Distributions of Multiblock Copolymers Prepared via RAFT Polymerization. Macromolecules, 2010, 43, 10283-10290.	4.8	22
80	Determining Initiator Efficiency in Radical Polymerization by Electrosprayâ€lonization Mass Spectrometry. Macromolecular Chemistry and Physics, 2009, 210, 1591-1599.	2.2	17
81	Surfaceâ€Initiated PLPâ€SEC of Butyl Acrylate and Styrene from Silica Nanoparticles. Macromolecular Rapid Communications, 2009, 30, 1989-1994.	3.9	5
82	Determination of the Mode of Termination in Radical Polymerization via Mass Spectrometry. Macromolecules, 2009, 42, 652-662.	4.8	48
83	Mechanism of CPDB-Mediated RAFT Polymerization of Methyl Methacrylate: Influence of Pressure and RAFT Agent Concentration. Australian Journal of Chemistry, 2009, 62, 1484.	0.9	23
84	Trithiocarbonates Containing Trimethoxysilyl Functionalities as Mediating Agents in Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Polymerization of Methyl Acrylate. Macromolecular Symposia, 2009, 275–276, 1-12.	0.7	19
85	Characterization of Zâ€RAFT Star Polymerization of Butyl acrylate by Sizeâ€Exclusion Chromatography. Macromolecular Symposia, 2009, 275–276, 184-196.	0.7	14
86	A Bipedal Silica-Immobilized Azo-Initiator for Surface-Confined Radical Polymerizations. Australian Journal of Chemistry, 2009, 62, 1473.	0.9	22
87	Z-RAFT star polymerization of styrene: Comprehensive characterization using size-exclusion chromatography. Polymer, 2008, 49, 5199-5208.	3.8	34
88	Electrospray ionization mass spectrometric study of endâ€groups in peroxydicarbonateâ€initiated radical polymerization. Journal of Polymer Science Part A, 2008, 46, 6071-6081.	2.3	33
89	Tracing armâ€growth initiation in Zâ€RAFT star polymerization by NMR: The impact of the leaving Râ€group on star topology. Journal of Polymer Science Part A, 2008, 46, 7280-7286.	2.3	30
90	Synthesis of poly(methyl acrylate) loops grafted onto silica nanoparticles via reversible additionâ€fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2008, 46, 7656-7666.	2.3	61

#	Article	IF	CITATIONS
91	Solid-Supported MADIX Polymerization of Vinyl Acetate. Macromolecules, 2008, 41, 7071-7078.	4.8	36
92	Shielding effects in polymer-polymer reactions. II. Reactions between linear and star-branched chains with up to six arms. Journal of Chemical Physics, 2007, 127, 164906.	3.0	27
93	A Missing Reaction Step in Dithiobenzoate-Mediated RAFT Polymerization. Macromolecular Symposia, 2007, 248, 158-167.	0.7	25
94	Kinetic Aspects of RAFT Polymerization. Macromolecular Symposia, 2007, 248, 71-81.	0.7	21
95	Chain-Length-Dependent Termination in Acrylate Radical Polymerization Studied via Pulsed-Laser-Initiated RAFT Polymerization. Australian Journal of Chemistry, 2007, 60, 779.	0.9	28
96	Z-RAFT Star Polymerizations of Acrylates:Â Star Coupling via Intermolecular Chain Transfer to Polymer. Macromolecules, 2007, 40, 2683-2693.	4.8	105
97	Shielding Effects in Polymerâ€Polymer Reactions, 1. Macromolecular Theory and Simulations, 2007, 16, 610-618.	1.4	38
98	Electrospray ionization mass spectrometric end-group analysis of PMMA produced by radical polymerization using diacyl peroxide initiators. Polymer, 2007, 48, 5590-5598.	3.8	42
99	Initiation of radical polymerization by peroxyacetates: Polymer end-group analysis by electrospray ionization mass spectrometry. Journal of Polymer Science Part A, 2007, 45, 2453-2467.	2.3	36
100	Silica-immobilized cumyl dithiobenzoate as mediating agent in reversible addition fragmentation chain transfer (RAFT) polymerization. Polymers for Advanced Technologies, 2006, 17, 625-633.	3.2	44
101	Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. Journal of Polymer Science Part A, 2006, 44, 5809-5831.	2.3	429
102	Determination of Addition and Fragmentation Rate Coefficients in RAFT Polymerization via Time-Resolved ESR Spectroscopy after Laser Pulse Initiation. Macromolecular Rapid Communications, 2006, 27, 182-187.	3.9	49
103	Mechanism of Dithiobenzoate-Mediated RAFT Polymerization: A Missing Reaction Step. Macromolecular Rapid Communications, 2006, 27, 1299-1305.	3.9	52
104	On the Mechanism of Radical Polymerization of Methyl Methacrylate with Dithiobenzoic Acid as Mediator. Australian Journal of Chemistry, 2006, 59, 549.	0.9	18
105	Critically evaluated termination rate coefficients for free-radical polymerization: Experimental methods. Progress in Polymer Science, 2005, 30, 605-643.	24.7	137
106	Modeling RAFT polymerization kinetics via Monte Carlo methods: cumyl dithiobenzoate mediated methyl acrylate polymerization. Polymer, 2005, 46, 8483-8493.	3.8	105
107	RAFT Polymerization of Methyl Acrylate in Carbon Dioxide. Macromolecular Materials and Engineering, 2005, 290, 283-293.	3.6	53
108	Laser Single Pulse Initiated RAFT Polymerization for Assessing Chain-Length Dependent Radical Termination Kinetics. Macromolecular Rapid Communications, 2005, 26, 796-802.	3.9	65

#	Article	IF	CITATIONS
109	Poly(vinyl acetate) and Poly(vinyl propionate) Star Polymers via Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. Polymer Bulletin, 2005, 53, 231-242.	3.3	74
110	Chain Length Dependence of Chain Propagation Revisited. Macromolecules, 2005, 38, 1944-1948.	4.8	38
111	Cumyl Dithiobenzoate Mediated RAFT Polymerization of Styrene at High Temperatures. Macromolecules, 2005, 38, 7935-7943.	4.8	77
112	Chain Length Dependent Termination in Butyl Acrylate Free-Radical Polymerization Studied via Stationary and Pulsed Laser Initiated RAFT Polymerization. Macromolecules, 2005, 38, 9497-9508.	4.8	93
113	Initiation of free-radical polymerization by peroxypivalates studied by electrospray ionization mass spectrometry. Journal of Polymer Science Part A, 2004, 42, 4266-4275.	2.3	42
114	RAFT-Polymerization of Styrene up to High Pressure: Rate Enhancement and Improved Control. Macromolecular Rapid Communications, 2004, 25, 1376-1381.	3.9	83
115	Facile Access to Chain Length Dependent Termination Rate Coefficients via Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerization:Â Influence of the RAFT Agent Structure. Macromolecules, 2004, 37, 2404-2410.	4.8	56
116	Chain Length Dependent Termination in Free Radical Copolymerization. 1. The Copolymerization System Styreneâ~Methyl Methacrylate in Bulk at 25 °C. Macromolecules, 2004, 37, 1544-1550.	4.8	6
117	Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of Methyl Acrylate:Â Detailed Structural Investigation via Coupled Size Exclusion Chromatographyâ^'Electrospray Ionization Mass Spectrometry (SECâ^'ESI-MS). Macromolecules, 2004, 37, 744-751.	4.8	126
118	Influences of the Structural Design of RAFT Agents on Living Radical Polymerization Kinetics. ACS Symposium Series, 2003, , 551-569.	0.5	17
119	Xanthate Mediated Living Polymerization of Vinyl Acetate: A Systematic Variation in MADIX/RAFT Agent Structure. Macromolecular Chemistry and Physics, 2003, 204, 1160-1168.	2.2	312
120	Reversible addition–fragmentation chain transfer polymerization initiated with γ-radiation at ambient temperature: an overview. European Polymer Journal, 2003, 39, 449-459.	5.4	114
121	RAFTing down under: Tales of missing radicals, fancy architectures, and mysterious holes. Journal of Polymer Science Part A, 2003, 41, 365-375.	2.3	416
122	The reversible addition-fragmentation chain transfer process and the strength and limitations of modeling: Comment on ?the magnitude of the fragmentation rate coefficient?. Journal of Polymer Science Part A, 2003, 41, 2828-2832.	2.3	143
123	New aspects of chain-length dependent termination. Macromolecular Symposia, 2002, 182, 15-30.	0.7	15
124	Termination Rate Coefficient of Dimethyl Itaconate:Â Comparison of Modeling and Experimental Results. Macromolecules, 2002, 35, 1651-1657.	4.8	25
125	Multipulse Initiation in Pulsed Laser and Quenched Instationary Polymerization:Â Determination of the Propagation and Termination Rate Coefficients for Dicyclohexyl Itaconate Polymerization. Macromolecules, 2002, 35, 3008-3016.	4.8	27
126	Chain Length Dependent Propagation Rate Coefficientkpin Pulsed-Laser Polymerization:Â Variation with Temperature in the Bulk Polymerization of Styrene and Methyl Methacrylate. Macromolecules, 2002, 35, 1208-1214.	4.8	49

#	Article	IF	CITATIONS
127	Origin of Inhibition Effects in the Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of Methyl Acrylate. Macromolecules, 2002, 35, 8300-8306.	4.8	332
128	Kinetic Analysis of Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerizations: Conditions for Inhibition, Retardation, and Optimum Living Polymerization. Macromolecular Theory and Simulations, 2002, 11, 823-835.	1.4	261
129	Easy Access to Chain-Length-Dependent Termination Rate Coefficients Using RAFT Polymerization. Macromolecular Rapid Communications, 2002, 23, 952-956.	3.9	110
130	Critically Evaluated Termination Rate Coefficients for Free-Radical Polymerization, 1. Macromolecular Chemistry and Physics, 2002, 203, 2570-2582.	2.2	178
131	Laser-induced decomposition of 2,2-dimethoxy-2-phenylacetophenone and benzoin in methyl methacrylate homopolymerization studied via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Polymer Science Part A, 2002, 40, 675-681.	2.3	29
132	Long-lived intermediates in reversible addition-fragmentation chain-transfer (RAFT) polymerization generated by ? radiation. Journal of Polymer Science Part A, 2002, 40, 1058-1063.	2.3	122
133	Reversible addition-fragmentation chain-transfer polymerization: Unambiguous end-group assignment via electrospray ionization mass spectrometry. Journal of Polymer Science Part A, 2002, 40, 4032-4037.	2.3	119
134	Kinetic Analysis of Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerizations: Conditions for Inhibition, Retardation, and Optimum Living Polymerization. , 2002, 11, 823.		1
135	Easy Access to Chain-Length-Dependent Termination Rate Coefficients Using RAFT Polymerization. , 2002, 23, 952.		1
136	Chain Length Dependent Termination in Pulsed-Laser Polymerization. 9. The Influence of Solvent on the Rate Coefficient of Bimolecular Termination in the Polymerization of Styrene. Macromolecules, 2001, 34, 441-446.	4.8	24
137	Chain length-dependent termination in pulsed-laser polymerization. VIII. The temperature dependence of the rate coefficient of bimolecular termination in the bulk polymerization of styrene. Journal of Polymer Science Part A, 2000, 38, 697-705.	2.3	22
138	Is the rate constant of chain propagationkp in radical polymerization really chain-length independent?. Macromolecular Rapid Communications, 2000, 21, 913-920.	3.9	91
139	Is the rate constant of chain propagation kp in radical polymerization really chain-length independent?. , 2000, 21, 913.		1
140	Chain-length dependent termination in pulsed-laser polymerization, 7. The evaluation of the power-law exponentb from the chain-length distribution in the low frequency (single-pulse) limit for the reference systems styrene and methyl methacrylate in bulk at 25°C. Macromolecular Chemistry and Physics, 1999, 200, 2031-2039.	2.2	31
141	Time-delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of polyacrylnitrile and other synthetic polymers with the matrixÂ4-hydroxybenzylidene malononitrile. Rapid Communications in Mass Spectrometry, 1998, 12, 1344-1350.	1.5	17
142	Chain-length dependent termination in pulsed-laser polymerization, 6. The evaluation of the rate coefficient of bimolecular terminationkt for the reference system methyl methacrylate in bulk at 25°C. Macromolecular Rapid Communications, 1998, 19, 533-538.	3.9	14
143	Chain-length dependent termination in pulsed-laser polymerization, 6. The evaluation of the rate coefficient of bimolecular termination kt for the reference system methyl methacrylate in bulk at 25°C. Macromolecular Rapid Communications, 1998, 19, 533-538.	3.9	43
144	Chain-length dependent termination in pulsed-laser polymerization, 5. The evaluation of the rate coefficient of bimolecular termination kt for the reference system styrene in bulk at 25°C. Macromolecular Rapid Communications, 1998, 19, 433-439.	3.9	23

#	Article	IF	CITATIONS
145	The Kinetics of Free-Radical Polymerization. , 0, , 187-261.		32