
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4939478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIG-I To Suppress Innate Immunity. Journal of Virology, 2022, 96, JVI0151021.	1.5	8
2	Effect of Insertion and Deletion in the Meq Protein Encoded by Highly Oncogenic Marek's Disease Virus on Transactivation Activity and Virulence. Viruses, 2022, 14, 382.	1.5	5
3	Prevalence of antiâ€severe acute respiratory syndrome coronavirus 2 antibodies in cats in Germany and other European countries in the early phase of the coronavirus diseaseâ€19 pandemic. Zoonoses and Public Health, 2022, 69, 439-450.	0.9	12
4	Frequent Infection of Cats With SARS-CoV-2 Irrespective of Pre-Existing Enzootic Coronavirus Immunity, Brazil 2020. Frontiers in Immunology, 2022, 13, 857322.	2.2	6
5	Potential zoonotic sources of SARSâ€CoVâ€2 infections. Transboundary and Emerging Diseases, 2021, 68, 1824-1834.	1.3	87
6	Multiâ€species ELISA for the detection of antibodies against SARSâ€CoVâ€2 in animals. Transboundary and Emerging Diseases, 2021, 68, 1779-1785.	1.3	66
7	Equine Herpesviruses (Herpesviridae). , 2021, , 278-286.		1
8	SARSâ€CoVâ€2 infection of Chinese hamsters (<i>Cricetulus griseus</i>) reproduces COVIDâ€19 pneumonia in a wellâ€established small animal model. Transboundary and Emerging Diseases, 2021, 68, 1075-1079.	1.3	64
9	Graphene Sheets with Defined Dual Functionalities for the Strong SARSâ€CoVâ€⊋ Interactions. Small, 2021, 17, e2007091.	5.2	42
10	Immunogenicity of Calvenza-03 EIV/EHV® Vaccine in Horses: Comparative In Vivo Study. Vaccines, 2021, 9, 166.	2.1	5
11	Inhibition of Herpes Simplex Virus Type 1 Attachment and Infection by Sulfated Polyglycerols with Different Architectures. Biomacromolecules, 2021, 22, 1545-1554.	2.6	24
12	Epithelial response to IFNâ€Î³ promotes SARSâ€CoVâ€2 infection. EMBO Molecular Medicine, 2021, 13, e13191.	3.3	62
13	A hepatitis B virus causes chronic infections in equids worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
14	Grapheneâ€Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions. Advanced Functional Materials, 2021, 31, 2009003.	7.8	9
15	Palmitoylation of the envelope membrane proteins GP5 and M of porcine reproductive and respiratory syndrome virus is essential for virus growth. PLoS Pathogens, 2021, 17, e1009554.	2.1	9
16	Seasonal host and ecological drivers may promote restricted water as a viral vector. Science of the Total Environment, 2021, 773, 145446.	3.9	4
17	Equine Herpesvirus Type 4 (EHV-4) Outbreak in Germany: Virological, Serological, and Molecular Investigations. Pathogens, 2021, 10, 810.	1.2	10
18	SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nature Communications, 2021, 12, 3818.	5.8	172

#	Article	IF	CITATIONS
19	In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Scientific Reports, 2021, 11, 14571.	1.6	53
20	Replication of cowpox virus in macrophages is dependent on the host range factor p28/N1R. Virology Journal, 2021, 18, 173.	1.4	4
21	Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. Cell Reports, 2021, 36, 109493.	2.9	46
22	ACE2â€Variants Indicate Potential SARSâ€CoVâ€2â€Susceptibility in Animals: A Molecular Dynamics Study. Molecular Informatics, 2021, 40, e2100031.	1.4	8
23	Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature, 2021, 599, 283-289.	13.7	195
24	Surfactants – Compounds for inactivation of SARS-CoV-2 and other enveloped viruses. Current Opinion in Colloid and Interface Science, 2021, 55, 101479.	3.4	30
25	One-pot gram-scale synthesis of virucidal heparin-mimicking polymers as HSV-1 inhibitors. Chemical Communications, 2021, 57, 11948-11951.	2.2	12
26	Deciphering the Role of Humoral and Cellular Immune Responses in Different COVID-19 Vaccines—A Comparison of Vaccine Candidate Genes in Roborovski Dwarf Hamsters. Viruses, 2021, 13, 2290.	1.5	7
27	Live attenuated virus vaccine protects against SARS-CoV-2 variants of concern B.1.1.7 (Alpha) and B.1.351 (Beta). Science Advances, 2021, 7, eabk0172.	4.7	32
28	What a Difference a Gene Makes: Identification of Virulence Factors of Cowpox Virus. Journal of Virology, 2020, 94, .	1.5	6
29	Vaccination of foals with a modified live, equid herpesvirus-1 gM deletion mutant (RacHΔgM) confers partial protection against infection. Vaccine, 2020, 38, 388-398.	1.7	3
30	A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell, 2020, 183, 1058-1069.e19.	13.5	305
31	Age-Dependent Progression of SARS-CoV-2 Infection in Syrian Hamsters. Viruses, 2020, 12, 779.	1.5	192
32	Equine Alphaherpesviruses Require Activation of the Small GTPases Rac1 and Cdc42 for Intracellular Transport. Microorganisms, 2020, 8, 1013.	1.6	7
33	Equine Herpesvirus Type 1 Modulates Cytokine and Chemokine Profiles of Mononuclear Cells for Efficient Dissemination to Target Organs. Viruses, 2020, 12, 999.	1.5	11
34	Standardization of Reporting Criteria for Lung Pathology in SARS-CoV-2–infected Hamsters: What Matters?. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 856-859.	1.4	62
35	The Roborovski Dwarf Hamster Is A Highly Susceptible Model for a Rapid and Fatal Course of SARS-CoV-2 Infection. Cell Reports, 2020, 33, 108488.	2.9	76
36	Mechanism of Virus Attenuation by Codon Pair Deoptimization. Cell Reports, 2020, 31, 107586.	2.9	53

NIKOLAUS OSTERRIEDER

#	Article	IF	CITATIONS
37	Differentially-Charged Liposomes Interact with Alphaherpesviruses and Interfere with Virus Entry. Pathogens, 2020, 9, 359.	1.2	8
38	Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nature Nanotechnology, 2020, 15, 373-379.	15.6	96
39	SARSâ€CoVâ€⊋ vaccination—A plea for fast and coordinated action. Zoonoses and Public Health, 2020, 67, 840-840.	0.9	0
40	Bearing the brunt: Mongolian khulan (Equus hemionus hemionus) are exposed to multiple influenza A strains. Veterinary Microbiology, 2020, 242, 108605.	0.8	4
41	Viruses of protozoan parasites and viral therapy: Is the time now right?. Virology Journal, 2020, 17, 142.	1.4	22
42	EHV-1 Pathogenesis: Current in vitro Models and Future Perspectives. Frontiers in Veterinary Science, 2019, 6, 251.	0.9	5
43	Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions. Nanoscale, 2019, 11, 15804-15809.	2.8	83
44	Detection of equid herpesviruses among different Arabian horse populations in Egypt. Veterinary Medicine and Science, 2019, 5, 361-371.	0.6	12
45	An Equine Herpesvirus Type 1 (EHV-1) Ab4 Open Reading Frame 2 Deletion Mutant Provides Immunity and Protection from EHV-1 Infection and Disease. Journal of Virology, 2019, 93, .	1.5	18
46	Fatal Elephant Endotheliotropic Herpesvirus Infection of Two Young Asian Elephants. Microorganisms, 2019, 7, 396.	1.6	12
47	Herpesvirus DNA Polymerase Mutants—How Important Is Faithful Genome Replication?. Current Clinical Microbiology Reports, 2019, 6, 240-248.	1.8	3
48	Noninvasive Detection of Equid Herpesviruses in Fecal Samples. Applied and Environmental Microbiology, 2019, 85, .	1.4	10
49	Equine Herpesviruses and Interspecies Infections. , 2019, , 227-232.		1
50	A proofreading-impaired herpesvirus generates populations with quasispecies-like structure. Nature Microbiology, 2019, 4, 2175-2183.	5.9	17
51	Attenuation of Viruses by Large-Scale Recoding of their Genomes: the Selection Is Always Biased. Current Clinical Microbiology Reports, 2018, 5, 66-72.	1.8	7
52	Subclinical infection of a young captive Asian elephant with elephant endotheliotropic herpesvirus 1. Archives of Virology, 2018, 163, 495-500.	0.9	10
53	Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nature Immunology, 2018, 19, 53-62.	7.0	179
54	Novel Divergent Polar Bear-Associated Mastadenovirus Recovered from a Deceased Juvenile Polar Bear. MSphere, 2018, 3, .	1.3	8

#	Article	IF	CITATIONS
55	The deletion of the ORF1 and ORF71 genes reduces virulence of the neuropathogenic EHV-1 strain Ab4 without compromising host immunity in horses. PLoS ONE, 2018, 13, e0206679.	1.1	16
56	Deletion of the ORF2 gene of the neuropathogenic equine herpesvirus type 1 strain Ab4 reduces virulence while maintaining strong immunogenicity. BMC Veterinary Research, 2018, 14, 245.	0.7	11
57	How Host Specific Are Herpesviruses? Lessons from Herpesviruses Infecting Wild and Endangered Mammals. Annual Review of Virology, 2018, 5, 53-68.	3.0	52
58	Physiological costs of infection: herpesvirus replication is linked to blood oxidative stress in equids. Scientific Reports, 2018, 8, 10347.	1.6	16
59	Attenuation of a very virulent Marek's disease herpesvirus (MDV) by codon pair bias deoptimization. PLoS Pathogens, 2018, 14, e1006857.	2.1	37
60	Codon pair bias deoptimization of the major oncogene meq of a very virulent Marek's disease virus. Journal of General Virology, 2018, 99, 1705-1716.	1.3	7
61	Late-Term Abortion, Stillbirth, and Neonatal Foal Death in Kyrgyzstan: First Isolation of Equine Herpesvirus Type 1 in the Country. Journal of Equine Veterinary Science, 2017, 51, 46-53.	0.4	Ο
62	Size-dependent inhibition of herpesvirus cellular entry by polyvalent nanoarchitectures. Nanoscale, 2017, 9, 3774-3783.	2.8	70
63	Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses. Immunogenetics, 2017, 69, 351-358.	1.2	1
64	Canine distemper virus in the Serengeti ecosystem: molecular adaptation to different carnivore species. Molecular Ecology, 2017, 26, 2111-2130.	2.0	56
65	The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper. Microbial Pathogenesis, 2017, 111, 388-394.	1.3	8
66	Long term stability and infectivity of herpesviruses in water. Scientific Reports, 2017, 7, 46559.	1.6	31
67	A phylogenomic analysis of Marek's disease virus reveals independent paths to virulence in Eurasia and North America. Evolutionary Applications, 2017, 10, 1091-1101.	1.5	45
68	Construction and manipulation of a full-length infectious bacterial artificial chromosome clone of equine herpesvirus type 3 (EHV-3). Virus Research, 2017, 228, 30-38.	1.1	4
69	Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning. Journal of General Virology, 2017, 98, 2461-2469.	1.3	16
70	A Point Mutation in a Herpesvirus Co-Determines Neuropathogenicity and Viral Shedding. Viruses, 2017, 9, 6.	1.5	14
71	An equine herpesvirus type 1 (EHV-1) vector expressing Rift Valley fever virus (RVFV) Gn and Gc induces neutralizing antibodies in sheep. Virology Journal, 2017, 14, 154.	1.4	24
72	Experimental Cowpox Virus (CPXV) Infections of Bank Voles: Exceptional Clinical Resistance and Variable Reservoir Competence. Viruses, 2017, 9, 391.	1.5	11

#	Article	IF	CITATIONS
73	Initial Contact: The First Steps in Herpesvirus Entry. Advances in Anatomy, Embryology and Cell Biology, 2017, 223, 1-27.	1.0	22
74	Viral genes and cellular markers associated with neurological complications during herpesvirus infections. Journal of General Virology, 2017, 98, 1439-1454.	1.3	32
75	Zebra Alphaherpesviruses (EHV-1 and EHV-9): Genetic Diversity, Latency and Co-Infections. Viruses, 2016, 8, 262.	1.5	19
76	Präention der equinen Herpesvirus-Myeloenzephalopathie – Ist Heparin eine vielversprechende Option?. Tierarztliche Praxis Ausgabe G: Grosstiere - Nutztiere, 2016, 44, 313-317.	0.2	10
77	Histopathological and Immunohistochemical Studies of Cowpox Virus Replication in a Three-Dimensional Skin Model. Journal of Comparative Pathology, 2016, 155, 55-61.	0.1	10
78	Bats, Primates, and the Evolutionary Origins and Diversification of Mammalian Gammaherpesviruses. MBio, 2016, 7, .	1.8	31
79	Codon Pair Bias Is a Direct Consequence of Dinucleotide Bias. Cell Reports, 2016, 14, 55-67.	2.9	119
80	Equine herpesvirus type 1 (EHV1) induces alterations in the immunophenotypic profile of equine monocyte-derived dendritic cells. Veterinary Journal, 2016, 210, 85-88.	0.6	1
81	Glycoprotein B of equine herpesvirus type 1 has two recognition sites for subtilisin-like proteases that are cleaved by furin. Journal of General Virology, 2016, 97, 1218-1228.	1.3	4
82	Equid herpesvirus 1 (EHV1) infection of equine mesenchymal stem cells induces a pUL56-dependent downregulation of select cell surface markers. Veterinary Microbiology, 2015, 176, 32-39.	0.8	12
83	In vitro model for lytic replication, latency, and transformation of an oncogenic alphaherpesvirus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7279-7284.	3.3	44
84	Comparative Analysis of Glycoprotein B (gB) of Equine Herpesvirus Type 1 and Type 4 (EHV-1 and EHV-4) in Cellular Tropism and Cell-to-Cell Transmission. Viruses, 2015, 7, 522-542.	1.5	12
85	Equine Herpesvirus 1 Multiply Inserted Transmembrane Protein pUL43 Cooperates with pUL56 in Downregulation of Cell Surface Major Histocompatibility Complex Class I. Journal of Virology, 2015, 89, 6251-6263.	1.5	13
86	The common equine class I molecule Eqca-1*00101 (ELA-A3.1) is characterized by narrow peptide binding and T cell epitope repertoires. Immunogenetics, 2015, 67, 675-689.	1.2	7
87	Binding of Alphaherpesvirus Glycoprotein H to Surface α ₄ β ₁ -Integrins Activates Calcium-Signaling Pathways and Induces Phosphatidylserine Exposure on the Plasma Membrane. MBio, 2015, 6, e01552-15.	1.8	28
88	Out of the Reservoir: Phenotypic and Genotypic Characterization of a Novel Cowpox Virus Isolated from a Common Vole. Journal of Virology, 2015, 89, 10959-10969.	1.5	39
89	Role of gB and pUS3 in Equine Herpesvirus 1 Transfer between Peripheral Blood Mononuclear Cells and Endothelial Cells: a Dynamic <i>In Vitro</i> Model. Journal of Virology, 2015, 89, 11899-11908.	1.5	18
90	The ORF012 Gene of Marek's Disease Virus Type 1 Produces a Spliced Transcript and Encodes a Novel Nuclear Phosphoprotein Essential for Virus Growth. Journal of Virology, 2015, 89, 1348-1363.	1.5	12

NIKOLAUS OSTERRIEDER

#	Article	IF	CITATIONS
91	Equid Herpesvirus Type 1 Activates Platelets. PLoS ONE, 2015, 10, e0122640.	1.1	29
92	Comprehensive Serology Based on a Peptide ELISA to Assess the Prevalence of Closely Related Equine Herpesviruses in Zoo and Wild Animals. PLoS ONE, 2015, 10, e0138370.	1.1	26
93	The herpesvirus stealth program. Oncotarget, 2015, 6, 21761-21762.	0.8	0
94	Generation of a Complete Single-Gene Knockout Bacterial Artificial Chromosome Library of Cowpox Virus and Identification of Its Essential Genes. Journal of Virology, 2014, 88, 490-502.	1.5	15
95	Prevalence of equine gammaherpesviruses on breeding farms in Turkey and development of a TaqMan MGB real-time PCR to detect equine herpesvirus 5 (EHV-5). Archives of Virology, 2014, 159, 2989-2995.	0.9	17
96	Herpesvirus Genome Integration into Telomeric Repeats of Host Cell Chromosomes. Annual Review of Virology, 2014, 1, 215-235.	3.0	59
97	Equid herpesvirus type 4 uses a restricted set of equine major histocompatibility complex class I proteins as entry receptors. Journal of General Virology, 2014, 95, 1554-1563.	1.3	9
98	Polar Bear Encephalitis: Establishment of a Comprehensive Next-generation Pathogen Analysis Pipeline for Captive and Free-living Wildlife. Journal of Comparative Pathology, 2014, 150, 474-488.	0.1	9
99	Zebra-borne equine herpesvirus type 1 (EHV-1) infection in non-African captive mammals. Veterinary Microbiology, 2014, 169, 102-106.	0.8	35
100	Equine herpesvirus type 1 (EHV-1) open reading frame 59 encodes an early protein that is localized to the cytosol and required for efficient virus growth. Virology, 2014, 449, 263-269.	1.1	8
101	Major Histocompatibility Complex Class I Downregulation Induced by Equine Herpesvirus Type 1 pUL56 Is through Dynamin-Dependent Endocytosis. Journal of Virology, 2014, 88, 12802-12815.	1.5	16
102	A severe equine herpesvirus type 1 (EHV-1) abortion outbreak caused by a neuropathogenic strain at a breeding farm in northern Germany. Veterinary Microbiology, 2014, 172, 555-562.	0.8	36
103	Equine herpesvirus type 1 pUL56 modulates innate responses of airway epithelial cells. Virology, 2014, 464-465, 76-86.	1.1	23
104	Elevated dietary zinc oxide levels do not have a substantial effect on porcine reproductive and respiratory syndrome virus (PPRSV) vaccination and infection. Virology Journal, 2014, 11, 140.	1.4	3
105	Identification of 10 Cowpox Virus Proteins That Are Necessary for Induction of Hemorrhagic Lesions (Red Pocks) on Chorioallantoic Membranes. Journal of Virology, 2014, 88, 8615-8628.	1.5	8
106	High-dose dietary zinc oxide mitigates infection with transmissible gastroenteritis virus in piglets. BMC Veterinary Research, 2014, 10, 75.	0.7	31
107	Ubiquitination and degradation of the ORF34 gene product of equine herpesvirus type 1 (EHV-1) at late times of infection. Virology, 2014, 460-461, 11-22.	1.1	8
108	Dietary Enterococcus faecium NCIMB 10415 and Zinc Oxide Stimulate Immune Reactions to Trivalent Influenza Vaccination in Pigs but Do Not Affect Virological Response upon Challenge Infection. PLoS ONE, 2014, 9, e87007.	1.1	14

#	Article	IF	CITATIONS
109	Elimination halfâ€life of intravenously administered equine cardiac troponin I in healthy ponies. Equine Veterinary Journal, 2013, 45, 56-59.	0.9	23
110	Clinical observations and management of a severe equine herpesvirus type 1 outbreak with abortion and encephalomyelitis. Acta Veterinaria Scandinavica, 2013, 55, 19.	0.5	41
111	Equine herpesvirus type 1 infection induces procoagulant activity in equine monocytes. Veterinary Research, 2013, 44, 16.	1.1	17
112	Experimental infection with equine herpesvirus type 1 (EHV-1) induces chorioretinal lesions. Veterinary Research, 2013, 44, 118.	1.1	45
113	Development of a peptide ELISA for discrimination between serological responses to equine herpesvirus type 1 and 4. Journal of Virological Methods, 2013, 193, 667-673.	1.0	20
114	A Deletion in the Glycoprotein L (gL) Gene of U.S. Marek's Disease Virus (MDV) Field Strains Is Insufficient to Confer Increased Pathogenicity to the Bacterial Artificial Chromosome (BAC)–Based Strain, RB-1B. Avian Diseases, 2013, 57, 509-518.	0.4	6
115	Marek's disease virus (MDV) ubiquitin-specific protease (USP) performs critical functions beyond its enzymatic activity during virus replication. Virology, 2013, 437, 110-117.	1.1	9
116	Equine infectious diseases. Veterinary Microbiology, 2013, 167, 1.	0.8	0
117	Phocine herpesvirus 1 (PhHV-1) in harbor seals from Svalbard, Norway. Veterinary Microbiology, 2013, 164, 286-292.	0.8	11
118	Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4)—Masters of co-evolution and a constant threat to equids and beyond. Veterinary Microbiology, 2013, 167, 123-134.	0.8	84
119	A novel endogenous betaretrovirus group characterized from polar bears (Ursus maritimus) and giant pandas (Ailuropoda melanoleuca). Virology, 2013, 443, 1-10.	1.1	11
120	Recombinant equine herpesvirus 1 (EHV-1) vaccine protects pigs against challenge with influenza A(H1N1)pmd09. Virus Research, 2013, 173, 371-376.	1.1	15
121	Evaluation of metaphylactic RNA interference to prevent equine herpesvirus type 1 infection in experimental herpesvirus myeloencephalopathy in horses. American Journal of Veterinary Research, 2013, 74, 248-256.	0.3	6
122	Evidence for Novel Hepaciviruses in Rodents. PLoS Pathogens, 2013, 9, e1003438.	2.1	187
123	Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent Varicella-Zoster Virus Infection. PLoS Pathogens, 2013, 9, e1003512.	2.1	28
124	West Nile Virus Antibody Prevalence in Horses of Ukraine. Viruses, 2013, 5, 2469-2482.	1.5	12
125	Glycoprotein H and Â4Â1 Integrins Determine the Entry Pathway of Alphaherpesviruses. Journal of Virology, 2013, 87, 5937-5948.	1.5	25
126	Fluorescently Tagged pUL47 of Marek's Disease Virus Reveals Differential Tissue Expression of the Tegument Protein In Vivo. Journal of Virology, 2012, 86, 2428-2436.	1.5	48

#	Article	IF	CITATIONS
127	Identification and Characterization of Equine Herpesvirus Type 1 pUL56 and Its Role in Virus-Induced Downregulation of Major Histocompatibility Complex Class I. Journal of Virology, 2012, 86, 3554-3563.	1.5	45
128	Marek's Disease Viral Interleukin-8 Promotes Lymphoma Formation through Targeted Recruitment of B Cells and CD4 ⁺ CD25 ⁺ T Cells. Journal of Virology, 2012, 86, 8536-8545.	1.5	65
129	Equine Herpesvirus Type 4 UL56 and UL49.5 Proteins Downregulate Cell Surface Major Histocompatibility Complex Class I Expression Independently of Each Other. Journal of Virology, 2012, 86, 8059-8071.	1.5	25
130	Glycoproteins D of Equine Herpesvirus Type 1 (EHV-1) and EHV-4 Determine Cellular Tropism Independently of Integrins. Journal of Virology, 2012, 86, 2031-2044.	1.5	40
131	Profiling chemokine–glycoprotein G interactions: implications for alphaherpesviral immune evasion. Future Virology, 2012, 7, 441-444.	0.9	0
132	Venereal Shedding of Equid Herpesvirusâ€1 (<scp>EHV</scp> â€1) in Naturally Infected Stallions. Journal of Veterinary Internal Medicine, 2012, 26, 1500-1504.	0.6	16
133	Strain impact on equine herpesvirus type 1 (EHV-1) abortion models: Viral loads in fetal and placental tissues and foals. Vaccine, 2012, 30, 6564-6572.	1.7	36
134	Serological responses and clinical outcome after vaccination of mares and foals with equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) vaccines. Veterinary Microbiology, 2012, 160, 9-16.	0.8	18
135	The role of secreted glycoprotein G of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in immune modulation and virulence. Virus Research, 2012, 169, 203-211.	1.1	8
136	SERUM CHEMISTRY AND ANTIBODIES AGAINST PATHOGENS IN ANTARCTIC FUR SEALS, WEDDELL SEALS, CRABEATER SEALS, AND ROSS SEALS. Journal of Wildlife Diseases, 2012, 48, 632-645.	0.3	47
137	Cowpox virus serpin CrmA is necessary but not sufficient for the red pock phenotype on chicken chorioallantoic membranes. Virus Research, 2012, 163, 254-261.	1.1	6
138	The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding. Veterinary Research, 2012, 43, 61.	1.1	12
139	A Potentially Fatal Mix of Herpes in Zoos. Current Biology, 2012, 22, 1727-1731.	1.8	61
140	Antagonistic Pleiotropy and Fitness Trade-Offs Reveal Specialist and Generalist Traits in Strains of Canine Distemper Virus. PLoS ONE, 2012, 7, e50955.	1.1	37
141	Marek's Disease Virus Expresses Multiple UL44 (gC) Variants through mRNA Splicing That Are All Required for Efficient Horizontal Transmission. Journal of Virology, 2012, 86, 7896-7906.	1.5	25
142	Comparison of two trapping methods for Culicoides biting midges and determination of African horse sickness virus prevalence in midge populations at Onderstepoort, South Africa. Veterinary Parasitology, 2012, 185, 265-273.	0.7	35
143	An Equine Herpesvirus Type 1 (EHV-1) Expressing VP2 and VP5 of Serotype 8 Bluetongue Virus (BTV-8) Induces Protection in a Murine Infection Model. PLoS ONE, 2012, 7, e34425.	1.1	39
144	Equine herpesvirus type-1 modulates CCL2, CCL3, CCL5, CXCL9, and CXCL10 chemokine expression. Veterinary Immunology and Immunopathology, 2011, 140, 266-274.	0.5	36

#	Article	IF	CITATIONS
145	Infection of peripheral blood mononuclear cells with neuropathogenic equine herpesvirus type-1 strain Ab4 reveals intact interferon-α induction and induces suppression of anti-inflammatory interleukin-10 responses in comparison to other viral strains. Veterinary Immunology and Immunopathology, 2011, 143, 116-124.	0.5	36
146	Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus. Virus Research, 2011, 159, 23-31.	1.1	36
147	Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Research, 2011, 160, 316-325.	1.1	41
148	Use of real-time quantitative reverse transcription polymerase chain reaction for the detection of African horse sickness virus replication in <i>Culicoides imicola</i> . Onderstepoort Journal of Veterinary Research, 2011, 78, 344.	0.6	1
149	An equine herpesvirus 1 (EHV-1) vectored H1 vaccine protects against challenge with swine-origin influenza virus H1N1. Veterinary Microbiology, 2011, 154, 113-123.	0.8	10
150	Properties of an equine herpesvirus 1 mutant devoid of the internal inverted repeat sequence of the genomic short region. Virology, 2011, 410, 327-335.	1.1	3
151	Evaluation of immune responses following infection of ponies with an EHV-1 ORF1/2 deletion mutant. Veterinary Research, 2011, 42, 23.	1.1	55
152	Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC). Veterinary Research, 2011, 42, 3.	1.1	19
153	Simian varicella virus open reading frame 63/70 expression is required for efficient virus replication in culture. Journal of NeuroVirology, 2011, 17, 274-280.	1.0	7
154	Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. Journal of Experimental Medicine, 2011, 208, 605-615.	4.2	97
155	Herpesvirus Telomerase RNA (vTR) with a Mutated Template Sequence Abrogates Herpesvirus-Induced Lymphomagenesis. PLoS Pathogens, 2011, 7, e1002333.	2.1	37
156	Varicella-zoster virus–induced apoptosis in MeWo cells is accompanied by down-regulation of Bcl-2 expression. Journal of NeuroVirology, 2010, 16, 133-140.	1.0	24
157	Herpesviruses—A zoonotic threat?. Veterinary Microbiology, 2010, 140, 266-270.	0.8	71
158	Equine herpesvirus type 1 (EHV-1) utilizes microtubules, dynein, and ROCK1 to productively infect cells. Veterinary Microbiology, 2010, 141, 12-21.	0.8	35
159	Pathogenic potential of equine alphaherpesviruses: The importance of the mononuclear cell compartment in disease outcome. Veterinary Microbiology, 2010, 143, 21-28.	0.8	35
160	Down-regulation of MHC class I by the Marek's disease virus (MDV) UL49.5 gene product mildly affects virulence in a haplotype-specific fashion. Virology, 2010, 405, 457-463.	1.1	31
161	En Passant Mutagenesis: A Two Step Markerless Red Recombination System. Methods in Molecular Biology, 2010, 634, 421-430.	0.4	519
162	Residue 752 in DNA polymerase of equine herpesvirus type 1 is non-essential for virus growth in vitro. Journal of General Virology, 2010, 91, 1817-1822.	1.3	4

#	Article	IF	CITATIONS
163	Intrahost Evolutionary Dynamics of Canine Influenza Virus in Nail`ve and Partially Immune Dogs. Journal of Virology, 2010, 84, 5329-5335.	1.5	61
164	Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3099-3104.	3.3	241
165	Further Analysis of Marek's Disease Virus Horizontal Transmission Confirms That U _L 44 (gC) and U _L 13 Protein Kinase Activity Are Essential, while U _S 2 Is Nonessential. Journal of Virology, 2010, 84, 7911-7916.	1.5	36
166	Replication kinetics of neurovirulent versus non-neurovirulent equine herpesvirus type 1 strains in equine nasal mucosal explants. Journal of General Virology, 2010, 91, 2019-2028.	1.3	56
167	The Varicella-Zoster Virus ORFS/L (ORF0) Gene Is Required for Efficient Viral Replication and Contains an Element Involved in DNA Cleavage. Journal of Virology, 2010, 84, 11661-11669.	1.5	20
168	Herpesvirus Telomerase RNA(vTR)-Dependent Lymphoma Formation Does Not Require Interaction of vTR with Telomerase Reverse Transcriptase (TERT). PLoS Pathogens, 2010, 6, e1001073.	2.1	36
169	Impact of ETIF Deletion on Safety and Immunogenicity of Equine Herpesvirus Type 1-Vectored Vaccines. Journal of Virology, 2010, 84, 11602-11613.	1.5	2
170	A vectored equine herpesvirus type 1 (EHV-1) vaccine elicits protective immune responses against EHV-1 and H3N8 equine influenza virus. Vaccine, 2010, 28, 1048-1055.	1.7	24
171	The effect of siRNA treatment on experimental equine herpesvirus type 1 (EHV-1) infection in horses. Virus Research, 2010, 147, 176-181.	1.1	16
172	Viral control of vTR expression is critical for efficient formation and dissemination of lymphoma induced by Marek's disease virus (MDV). Veterinary Research, 2010, 41, 56.	1.1	31
173	Analysis of the Herpesvirus Chemokine-binding Clycoprotein G Residues Essential for Chemokine Binding and Biological Activity. Journal of Biological Chemistry, 2009, 284, 5968-5976.	1.6	14
174	A Singleâ€Nucleotide Polymorphism in a Herpesvirus DNA Polymerase Is Sufficient to Cause Lethal Neurological Disease. Journal of Infectious Diseases, 2009, 200, 20-25.	1.9	67
175	Investigation of the prevalence of neurologic equine herpes virus type 1 (EHV-1) in a 23-year retrospective analysis (1984–2007). Veterinary Microbiology, 2009, 139, 375-378.	0.8	87
176	A Deletion Within Glycoprotein L of Marek's Disease Virus (MDV) Field Isolates Correlates with a Decrease in Bivalent MDV Vaccine Efficacy in Contact-Exposed Chickens. Avian Diseases, 2009, 53, 287-296.	0.4	16
177	The Marek's disease virus (MDV) protein encoded by the UL17 ortholog is essential for virus growth. Veterinary Research, 2009, 40, 28.	1.1	7
178	Effective Treatment of Respiratory Alphaherpesvirus Infection Using RNA Interference. PLoS ONE, 2009, 4, e4118.	1.1	29
179	Clustering of mutations within the inverted repeat regions of a serially passaged attenuated gallid herpesvirus type 2 strain. Virus Genes, 2008, 37, 69-80.	0.7	30
180	Enzymatically inactive US3 protein kinase of Marek's disease virus (MDV) is capable of depolymerizing F-actin but results in accumulation of virions in perinuclear invaginations and reduced virus growth. Virology, 2008, 375, 37-47.	1.1	31

#	Article	IF	CITATIONS
181	Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza. Vaccine, 2008, 26, 2335-2343.	1.7	28
182	CCL3 and Viral Chemokine-Binding Protein gG Modulate Pulmonary Inflammation and Virus Replication during Equine Herpesvirus 1 Infection. Journal of Virology, 2008, 82, 1714-1722.	1.5	31
183	Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP. PLoS Pathogens, 2008, 4, e1000080.	2.1	68
184	Equine Herpesvirus 1 Entry via Endocytosis Is Facilitated by αV Integrins and an RSD Motif in Glycoprotein D. Journal of Virology, 2008, 82, 11859-11868.	1.5	45
185	Varicella-Zoster Virus Open Reading Frame 66 Protein Kinase Is Required for Efficient Viral Growth in Primary Human Corneal Stromal Fibroblast Cells. Journal of Virology, 2008, 82, 7653-7665.	1.5	29
186	Alphaherpesviruses and Chemokines: Pas de Deux Not Yet Brought to Perfection. Journal of Virology, 2008, 82, 6090-6097.	1.5	21
187	Protection of Mice by Equine Herpesvirus Type 1–Based Experimental Vaccine against Lethal Venezuelan Equine Encephalitis Virus Infection in the Absence of Neutralizing Antibodies. American Journal of Tropical Medicine and Hygiene, 2008, 78, 83-92.	0.6	16
188	Protection of mice by equine herpesvirus type 1 based experimental vaccine against lethal Venezuelan equine encephalitis virus infection in the absence of neutralizing antibodies. American Journal of Tropical Medicine and Hygiene, 2008, 78, 83-92.	0.6	7
189	A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20025-20030.	3.3	74
190	A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity. PLoS Pathogens, 2007, 3, e160.	2.1	176
191	Horizontal Transmission of Marek's Disease Virus Requires U S 2, the U L 13 Protein Kinase, and gC. Journal of Virology, 2007, 81, 10575-10587.	1.5	105
192	Evaluation of the vaccine potential of an equine herpesvirus type 1 vector expressing bovine viral diarrhea virus structural proteins. Journal of General Virology, 2007, 88, 748-757.	1.3	26
193	A Self-Excisable Infectious Bacterial Artificial Chromosome Clone of Varicella-Zoster Virus Allows Analysis of the Essential Tegument Protein Encoded by <i>ORF9</i> . Journal of Virology, 2007, 81, 13200-13208.	1.5	118
194	Herpesvirus Chemokine-Binding Glycoprotein G (gG) Efficiently Inhibits Neutrophil Chemotaxis In Vitro and In Vivo. Journal of Immunology, 2007, 179, 4161-4169.	0.4	49
195	Molecular Characterization of the Equine Herpesvirus 1 Strains RacL11 and Kentucky D. Journal of Veterinary Medical Science, 2007, 69, 573-576.	0.3	5
196	Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Research, 2007, 125, 69-78.	1.1	25
197	In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology, 2007, 362, 151-162.	1.1	33
198	A full UL13 open reading frame in Marek's disease virus (MDV) is dispensable for tumor formation andÂfeather follicle tropism and cannot restore horizontal virus transmission of rRB-1B in vivo. Veterinary Research, 2007, 38, 419-433.	1.1	30

#	Article	IF	CITATIONS
199	Comparison of the efficacy of inactivated combination and modified-live virus vaccines against challenge infection with neuropathogenic equine herpesvirus type 1 (EHV-1). Vaccine, 2006, 24, 3636-3645.	1.7	92
200	Marek's disease virus: from miasma to model. Nature Reviews Microbiology, 2006, 4, 283-294.	13.6	343
201	A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. Journal of Experimental Medicine, 2006, 203, 1307-1317.	4.2	112
202	Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in <i>Escherichia coli</i> . BioTechniques, 2006, 40, 191-197.	0.8	703
203	The α-TIF (VP16) Homologue (ETIF) of Equine Herpesvirus 1 Is Essential for Secondary Envelopment and Virus Egress. Journal of Virology, 2006, 80, 2609-2620.	1.5	31
204	Equine herpesvirus type 1 modified live virus vaccines:quo vaditis?. Expert Review of Vaccines, 2006, 5, 119-131.	2.0	25
205	Marek's disease virus: lytic replication, oncogenesis and control. Expert Review of Vaccines, 2006, 5, 761-772.	2.0	85
206	vLIP, a Viral Lipase Homologue, Is a Virulence Factor of Marek's Disease Virus. Journal of Virology, 2005, 79, 6984-6996.	1.5	64
207	Potential of Equine Herpesvirus 1 as a Vector for Immunization. Journal of Virology, 2005, 79, 5445-5454.	1.5	28
208	High-Level Expression of Marek's Disease Virus Glycoprotein C Is Detrimental to Virus Growth In Vitro. Journal of Virology, 2005, 79, 5889-5899.	1.5	36
209	The Protein Encoded by the US3 Orthologue of Marek's Disease Virus Is Required for Efficient De-Envelopment of Perinuclear Virions and Involved in Actin Stress Fiber Breakdown. Journal of Virology, 2005, 79, 3987-3997.	1.5	108
210	Expression of the Full-Length Form of gp2 of Equine Herpesvirus 1 (EHV-1) Completely Restores Respiratory Virulence to the Attenuated EHV-1 Strain KyA in CBA Mice. Journal of Virology, 2005, 79, 5105-5115.	1.5	26
211	Attenuation of Marek's Disease Virus by Deletion of Open Reading Frame RLORF4 but Not RLORF5a. Journal of Virology, 2005, 79, 11647-11659.	1.5	101
212	Equine Herpesvirus 1 Utilizes a Novel Herpesvirus Entry Receptor. Journal of Virology, 2005, 79, 3169-3173.	1.5	25
213	The genome content of Marek's disease-like viruses. , 2004, , 17-31.		38
214	Oncogenicity of Virulent Marek's Disease Virus Cloned as Bacterial Artificial Chromosomes. Journal of Virology, 2004, 78, 13376-13380.	1.5	117
215	The Truncated Form of Glycoprotein gp2 of Equine Herpesvirus 1 (EHV-1) Vaccine Strain KyA Is Not Functionally Equivalent to Full-Length gp2 Encoded by EHV-1 Wild-Type Strain RacL11. Journal of Virology, 2004, 78, 3003-3013.	1.5	31
216	Equine herpesvirus type 1 (EHV-1) glycoprotein K is required for efficient cell-to-cell spread and virus egress. Virology, 2004, 329, 18-32.	1.1	23

#	Article	IF	CITATIONS
217	Meningoencephalitis in Mice Infected with an Equine Herpesvirus 1 Strain KyA Recombinant Expressing Glycoprotein I and Glycoprotein E. Virus Genes, 2004, 29, 9-17.	0.7	22
218	Generation and characterization of an EICPO null mutant of equine herpesvirus 1. Virus Research, 2003, 98, 163-172.	1.1	14
219	Mutagenesis of a bovine herpesvirus type 1 genome cloned as an infectious bacterial artificial chromosome: analysis of glycoprotein E and G double deletion mutants. Journal of General Virology, 2003, 84, 301-306.	1.3	33
220	Replication-Competent Bacterial Artificial Chromosomes of Marek's Disease Virus: Novel Tools for Generation of Molecularly Defined Herpesvirus Vaccines. Journal of Virology, 2003, 77, 8712-8718.	1.5	84
221	Cytokine Profiles and Long-Term Virus-Specific Antibodies Following Immunization of CBA Mice with Equine Herpesvirus 1 and Viral Glycoprotein D. Viral Immunology, 2003, 16, 307-320.	0.6	6
222	Detection of Marek's Disease Virus DNA in Chicken but Not in Human Plasma. Journal of Clinical Microbiology, 2003, 41, 2428-2432.	1.8	10
223	Characterization of Marek's Disease Virus Serotype 1 (MDV-1) Deletion Mutants That Lack UL46 to UL49 Genes: MDV-1 UL49, Encoding VP22, Is Indispensable for Virus Growth. Journal of Virology, 2002, 76, 1959-1970.	1.5	98
224	The Gene 10 (UL49.5) Product of Equine Herpesvirus 1 Is Necessary and Sufficient for Functional Processing of Glycoprotein M. Journal of Virology, 2002, 76, 2952-2963.	1.5	44
225	The Interacting UL31 and UL34 Gene Products of Pseudorabies Virus Are Involved in Egress from the Host-Cell Nucleus and Represent Components of Primary Enveloped but Not Mature Virions. Journal of Virology, 2002, 76, 364-378.	1.5	214
226	Contribution of gene products encoded within the unique short segment of equine herpesvirus 1 to virulence in a murine model. Virus Research, 2002, 90, 287-301.	1.1	29
227	Equine Herpesvirus Type 1 Devoid of gM and gp2 Is Severely Impaired in Virus Egress but Not Direct Cell-to-Cell Spread. Virology, 2002, 293, 356-367.	1.1	61
228	The Equine Herpesvirus 1 UL34 Gene Product Is Involved in an Early Step in Virus Egress and Can Be Efficiently Replaced by a UL34-GFP Fusion Protein. Virology, 2002, 300, 189-204.	1.1	35
229	A DNA vaccine containing an infectious Marek's disease virus genome can confer protection against tumorigenic Marek's disease in chickens. Journal of General Virology, 2002, 83, 2367-2376.	1.3	42
230	The products of the UL10 (gM) and the UL49.5 genes of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. Journal of General Virology, 2002, 83, 997-1003.	1.3	60
231	Generation of a permanent cell line that supports efficient growth of Marek′s disease virus (MDV) by constitutive expression of MDV glycoprotein E. Journal of General Virology, 2002, 83, 1987-1992.	1.3	36
232	Deletion of gene 52 encoding glycoprotein M of equine herpesvirus type 1 strain RacH results in increased immunogenicity. Veterinary Microbiology, 2001, 81, 219-226.	0.8	13
233	Glycoproteins E and I of Marek's Disease Virus Serotype 1 Are Essential for Virus Growth in Cultured Cells. Journal of Virology, 2001, 75, 11307-11318.	1.5	62
234	Equine Herpesvirus 1 (EHV-1) Glycoprotein M: Effect of Deletions of Transmembrane Domains. Virology, 2000, 278, 477-489.	1.1	25

#	Article	IF	CITATIONS
235	Reconstitution of Marek's Disease Virus Serotype 1 (MDV-1) from DNA Cloned as a Bacterial Artificial Chromosome and Characterization of a Glycoprotein B-Negative MDV-1 Mutant. Journal of Virology, 2000, 74, 11088-11098.	1.5	189
236	Construction and characterization of an equine herpesvirus 1 glycoprotein C negative mutant. Virus Research, 1999, 59, 165-177.	1.1	65
237	EQUINE HERPRESVIRUSES (HERPESVIRIDAE). , 1999, , 508-515.		21
238	The Equine Herpesvirus 1 U _S 2 Homolog Encodes a Nonessential Membrane-Associated Virion Component. Journal of Virology, 1999, 73, 3430-3437.	1.5	31
239	Protective immunity against equine herpesvirus type-1 (EHV-1) infection in mice induced by recombinant EHV-1 gD. Virus Research, 1998, 56, 11-24.	1.1	31
240	The Equine Herpesvirus 1 IR6 Protein That Colocalizes with Nuclear Lamins Is Involved in Nucleocapsid Egress and Migrates from Cell to Cell Independently of Virus Infection. Journal of Virology, 1998, 72, 9806-9817.	1.5	24
241	Analysis of the Contributions of the Equine Herpesvirus 1 Glycoprotein gB Homolog to Virus Entry and Direct Cell-to-Cell Spread. Virology, 1997, 227, 281-294.	1.1	52
242	Synthesis and Processing of the Equine Herpesvirus 1 Glycoprotein M. Virology, 1997, 232, 230-239.	1.1	25
243	Equine Herpesvirus 1 Mutants Devoid of Glycoprotein B or M Are Apathogenic for Mice but Induce Protection against Challenge Infection. Virology, 1997, 239, 36-45.	1.1	35
244	The Equine Herpesvirus 1 IR6 Protein Is Nonessential for Virus Growthin Vitroand Modified by Serial Virus Passage in Cell Culture. Virology, 1996, 217, 442-451.	1.1	21
245	The Equine Herpesvirus 1 IR6 Protein Influences Virus Growth at Elevated Temperature and Is a Major Determinant of Virulence. Virology, 1996, 226, 243-251.	1.1	47
246	Protection against EHV-1 Challenge Infection in the Murine Model after Vaccination with Various Formulations of Recombinant Glycoprotein gp14 (gB). Virology, 1995, 208, 500-510.	1.1	79
247	Characterization of the gene encoding the A-type inclusion body protein of mousepox virus. Virus Genes, 1994, 8, 125-135.	0.7	26
248	A touchdown PCR for the differentiation of equine herpesvirus type 1 (EHV-1) field strains from the modified live vaccine strain RacH. Journal of Virological Methods, 1994, 50, 129-136.	1.0	17
249	Differentiation of species of the genus Orthopoxvirus in a dot blot assay using digoxigenin-labeled DNA-probes. Veterinary Microbiology, 1993, 34, 333-344.	0.8	16
250	A Sars-Cov-2 Neutralizing Antibody Protects from Lung Pathology in a Covid-19 Hamster Model. SSRN Electronic Journal, 0, , .	0.4	3
251	Engineering and Characterization of Avian Coronavirus Mutants Expressing Fluorescent Reporter Proteins from the Replicase Gene. Journal of Virology, 0, , .	1.5	0