Felipe D Lopez-Hilfiker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493934/publications.pdf

Version: 2024-02-01

61 papers

6,312 citations

36 h-index 61 g-index

62 all docs

62 docs citations

times ranked

62

4884 citing authors

#	Article	IF	CITATIONS
1	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	13.7	1,448
2	An Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic Compounds. Environmental Science & Env	4.6	406
3	A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmospheric Measurement Techniques, 2014, 7, 983-1001.	1.2	345
4	Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time. Environmental Science & Environmental Science & 2013, 47, 6316-6324.	4.6	304
5	Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1516-1521.	3.3	269
6	A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 2015, 15, 6283-6304.	1.9	197
7	Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2038-2043.	3.3	186
8	Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,355.	1.2	176
9	Evaluation of a New Reagent-Ion Source and Focusing Ion–Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2018, 90, 12011-12018.	3.2	168
10	The role of chlorine in global tropospheric chemistry. Atmospheric Chemistry and Physics, 2019, 19, 3981-4003.	1.9	160
11	Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA. Environmental Science & Epox Derived SOA. Epox Derived SOA. Environmental Science & Epox Derived SOA. Epox Der	4.6	141
12	Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts. Atmospheric Measurement Techniques, 2016, 9, 1505-1512.	1.2	132
13	Phase partitioning and volatility of secondary organic aerosol components formed from $\hat{l}\pm$ -pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. Atmospheric Chemistry and Physics, 2015, 15, 7765-7776.	1.9	126
14	Organic nitrate aerosol formation via NO ₃ + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 13377-13392.	1.9	124
15	Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8110-8115.	3.3	118
16	Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bulletin of the American Meteorological Society, 2015, 96, 779-804.	1.7	105
17	Heterogeneous N ₂ O ₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4345-4372.	1.2	103
18	Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway. Environmental Science & Technology, 2016, 50, 9872-9880.	4.6	100

#	Article	IF	CITATIONS
19	A Chemical lonization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species. Aerosol Science and Technology, 2012, 46, 1313-1327.	1.5	99
20	Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization. Journal of Physical Chemistry A, 2016, 120, 576-587.	1.1	93
21	An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles. Atmospheric Measurement Techniques, 2019, 12, 4867-4886.	1.2	91
22	Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6641-6646.	3.3	78
23	Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth. Geophysical Research Letters, 2017, 44, 2958-2966.	1.5	71
24	Molecular composition and volatility of isoprene photochemicalÂoxidationÂsecondaryÂorganic aerosolÂunderÂlow-ÂandÂhigh-NO _{<i>x</i><td>mp;gt;Acon</td><td>ditizons.</td>}	mp;g t;A con	dit izo ns.
25	On the fate of oxygenated organic molecules in atmospheric aerosol particles. Science Advances, 2020, 6, eaax8922.	4.7	63
26	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	1.2	58
27	Ozone production chemistry in the presence of urban plumes. Faraday Discussions, 2016, 189, 169-189.	1.6	56
28	Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields. Environmental Science & Echnology, 2017, 51, 4978-4987.	4.6	53
29	Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS. Atmospheric Measurement Techniques, 2019, 12, 6193-6208.	1.2	53
30	NO _{x} Lifetime and NO _{y} Partitioning During WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9813-9827.	1.2	52
31	Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,368.	1.2	49
32	Isothermal Evaporation of α-Pinene Ozonolysis SOA: Volatility, Phase State, and Oligomeric Composition. ACS Earth and Space Chemistry, 2018, 2, 1058-1067.	1.2	49
33	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	1.5	43
34	A model framework to retrieve thermodynamic and kinetic properties of organic aerosol from composition-resolved thermal desorption measurements. Atmospheric Chemistry and Physics, 2018, 18, 14757-14785.	1.9	42
35	Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model. Atmospheric Chemistry and Physics, 2020, 20, 8201-8225.	1.9	42
36	Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013. Aerosol Science and Technology, 2017, 51, 30-56.	1.5	39

#	Article	IF	CITATIONS
37	Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 11547-11562.	1.9	39
38	Flight Deployment of a Highâ∈Resolution Timeâ€ofâ€Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7670-7686.	1.2	39
39	Temperature dependent halogen activation by N ₅ reactions on halide-doped ice surfaces. Atmospheric Chemistry and Physics, 2012, 12, 5237-5247.	1.9	38
40	Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility. Atmospheric Chemistry and Physics, 2019, 19, 11253-11265.	1.9	38
41	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometerÂ(EESI-TOF-MS) – PartÂ1: Biogenic influences and day–night chemistry in summer. Atmospheric Chemistry and Physics, 2019, 19, 14825-14848.	1.9	38
42	High upward fluxes of formic acid from a boreal forest canopy. Geophysical Research Letters, 2016, 43, 9342-9351.	1.5	36
43	Evaluating Organic Aerosol Sources and Evolution with a Combined Molecular Composition and Volatility Framework Using the Filter Inlet for Gases and Aerosols (FIGAERO). Accounts of Chemical Research, 2020, 53, 1415-1426.	7.6	36
44	Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign. Atmospheric Chemistry and Physics, 2016, 16, 14409-14420.	1.9	33
45	Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of Coalâ€Fired Power Plants. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11225-11237.	1.2	33
46	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 2018, 18, 2341-2361.	1.9	30
47	Biomass Burning Markers and Residential Burning in the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1846-1861.	1.2	30
48	Surgical smoke: still an underestimated health hazard in the operating theatre. European Journal of Cardio-thoracic Surgery, 2019, 55, 626-631.	0.6	29
49	Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants. Geophysical Research Letters, 2019, 46, 14826-14835.	1.5	28
50	Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States. Geophysical Research Letters, 2019, 46, 2974-2983.	1.5	25
51	Wintertime Gasâ€Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,897.	1.2	21
52	An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors. Atmospheric Measurement Techniques, 2017, 10, 3609-3625.	1.2	19
53	Resolving Ambient Organic Aerosol Formation and Aging Pathways with Simultaneous Molecular Composition and Volatility Observations. ACS Earth and Space Chemistry, 2020, 4, 391-402.	1.2	19
54	Wintertime Overnight NO _{<i>x</i>} Removal in a Southeastern United States Coalâ€fired Power Plant Plume: A Model for Understanding Winter NO _{<i>x</i>} Processing and its Implications. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1412-1425.	1.2	14

#	Article	IF	CITATIONS
55	Gas to Particle Partitioning of Organic Acids in the Boreal Atmosphere. ACS Earth and Space Chemistry, 2019, 3, 1279-1287.	1.2	13
56	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
57	Thermal Desorption–Vocus Enables Online Nondestructive Quantification of 2,4,6-Trichloroanisole in Cork Stoppers below the Perception Threshold. Analytical Chemistry, 2020, 92, 9823-9829.	3.2	9
58	A robust clustering algorithm for analysis of composition-dependent organic aerosol thermal desorption measurements. Atmospheric Chemistry and Physics, 2020, 20, 2489-2512.	1.9	9
59	Comparison of Airborne Reactive Nitrogen Measurements During WINTER. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10483-10502.	1.2	7
60	Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products. Atmospheric Chemistry and Physics, 2022, 22, 5477-5494.	1.9	6
61	Effects of oligomerization and decomposition on the nanoparticle growth: a model study. Atmospheric Chemistry and Physics, 2022, 22, 155-171.	1.9	4