Indrani C Bagchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of AKT Signaling in Mouse Uterus. Endocrinology, 2022, 163, .	2.8	6
2	Insulin Signaling Via Progesterone-Regulated Insulin Receptor Substrate 2 is Critical for Human Uterine Decidualization. Endocrinology, 2020, 161, .	2.8	26
3	Msx Homeobox Genes Act Downstream of BMP2 to Regulate Endometrial Decidualization in Mice and in Humans. Endocrinology, 2019, 160, 1631-1644.	2.8	16
4	Chronic Exposure of Mice to Bisphenol-A Alters Uterine Fibroblast Growth Factor Signaling and Leads to Aberrant Epithelial Proliferation. Endocrinology, 2019, 160, 1234-1246.	2.8	23
5	IL-1β Inhibits Connexin 43 and Disrupts Decidualization of Human Endometrial Stromal Cells Through ERK1/2 and p38 MAP Kinase. Endocrinology, 2017, 158, 4270-4285.	2.8	48
6	Chronic Exposure to Bisphenol A Affects Uterine Function During Early Pregnancy in Mice. Endocrinology, 2016, 157, 1764-1774.	2.8	51
7	Roles of Estrogen Receptor-α and the Coactivator MED1 During Human Endometrial Decidualization. Molecular Endocrinology, 2016, 30, 302-313.	3.7	30
8	Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology, 2016, 157, 2432-2446.	2.8	54
9	Roles of Progesterone Receptor A and B Isoforms During Human Endometrial Decidualization. Molecular Endocrinology, 2015, 29, 882-895.	3.7	79
10	WNT4 Acts Downstream of BMP2 and Functions via β-Catenin Signaling Pathway to Regulate Human Endometrial Stromal Cell Differentiation. Endocrinology, 2013, 154, 446-457.	2.8	99
11	Role of DNA Methylation and Epigenetic Silencing of HAND2 in Endometrial Cancer Development. PLoS Medicine, 2013, 10, e1001551.	8.4	135
12	Msx Homeobox Genes Critically Regulate Embryo Implantation by Controlling Paracrine Signaling between Uterine Stroma and Epithelium. PLoS Genetics, 2012, 8, e1002500.	3.5	93
13	The Antiproliferative Action of Progesterone in Uterine Epithelium Is Mediated by Hand2. Science, 2011, 331, 912-916.	12.6	331
14	WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB Journal, 2011, 25, 1176-1187.	0.5	221
15	Endometrial Decidualization: Of Mice and Men. Seminars in Reproductive Medicine, 2010, 28, 017-026.	1.1	406
16	Gap junction communication between uterine stromal cells plays a critical role in pregnancy-associated neovascularization and embryo survival. Development (Cambridge), 2008, 135, 2659-2668.	2.5	117
17	Bone Morphogenetic Protein 2 Functions via a Conserved Signaling Pathway Involving Wnt4 to Regulate Uterine Decidualization in the Mouse and the Human. Journal of Biological Chemistry, 2007, 282, 31725-31732.	3.4	210
18	ACTIVATION OF PPAR GAMMA FUNCTION BY ARACHIDONIC ACID METABOLITES CONTROLS OVULATION BY INDUCING THE EXPRESSION OF PRO-INFLAMMATORY AND VASOACTIVE MOLECULES IN THE OVARY. Biology of Reproduction, 2007, 77, 195-195.	2.7	0

Indrani C Bagchi

#	Article	IF	CITATIONS
19	Use of the Progesterone Receptor Antagonist RU 486 to Identify Novel Progesterone Receptor-Regulated Pathways in Implantation. Seminars in Reproductive Medicine, 2005, 23, 38-45.	1.1	31
20	A Novel Pathway Involving Progesterone Receptor, 12/15-Lipoxygenase-derived Eicosanoids, and Peroxisome Proliferator-activated Receptor γ Regulates Implantation in Mice. Journal of Biological Chemistry, 2004, 279, 11570-11581.	3.4	83
21	Progesterone receptor regulated gene networks in implantation. Frontiers in Bioscience - Landmark, 2003, 8, s852-861.	3.0	24
22	Embryo Implantation. Developmental Biology, 2000, 223, 217-237.	2.0	677