Pierluigi Mazzei

List of Publications by Citations

Source: https://exaly.com/author-pdf/4939127/pierluigi-mazzei-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 1,633 24 38 g-index

63 2,024 5.6 4.82 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
62	Humic and fulvic acids as biostimulants in horticulture. <i>Scientia Horticulturae</i> , 2015 , 196, 15-27	4.1	352
61	H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. <i>Food Chemistry</i> , 2012 , 132, 1620-1627	8.5	94
60	Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy. <i>Environmental Science & Environmental Science & En</i>	10.3	61
59	NMR spectroscopy evaluation of direct relationship between soils and molecular composition of red wines from Aglianico grapes. <i>Analytica Chimica Acta</i> , 2010 , 673, 167-72	6.6	61
58	A novel fungal metabolite with beneficial properties for agricultural applications. <i>Molecules</i> , 2014 , 19, 9760-72	4.8	47
57	Polyphasic screening, homopolysaccharide composition, and viscoelastic behavior of wheat Sourdough from a Leuconostoc lactis and Lactobacillus curvatus exopolysaccharide-producing starter culture. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 2737-47	4.8	45
56	A molecular zoom into soil Humeome by a direct sequential chemical fractionation of soil. <i>Science of the Total Environment</i> , 2017 , 586, 807-816	10.2	42
55	Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma. <i>Journal of Agricultural and Food Chemistry</i> , 2016 , 64, 3538-45	5.7	42
54	The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. <i>Science of the Total Environment</i> , 2017 , 576, 858-867	10.2	41
53	Performance Assessment in Fingerprinting and Multi Component Quantitative NMR Analyses. <i>Analytical Chemistry</i> , 2015 , 87, 6709-17	7.8	41
52	Cerinolactone, a hydroxy-lactone derivative from Trichoderma cerinum. <i>Journal of Natural Products</i> , 2012 , 75, 103-6	4.9	40
51	Metabolomic by 1H NMR spectroscopy differentiates "Fiano di Avellino" white wines obtained with different yeast strains. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 10816-22	5.7	39
50	Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. <i>Natural Product Research</i> , 2016 , 30, 2575-2581	2.3	37
49	Humic-like bioactivity on emergence and early growth of maize (Zea mays L.) of water-soluble lignins isolated from biomass for energy. <i>Plant and Soil</i> , 2016 , 402, 221-233	4.2	36
48	Isolation and Characterization of Gramineae and Fabaceae Soda Lignins. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	34
47	Silica Treatments: A Fire Retardant Strategy for Hemp Fabric/Epoxy Composites. <i>Polymers</i> , 2016 , 8,	4.5	34
46	An alternative to mineral phosphorus fertilizers: The combined effects of Trichoderma harzianum and compost on Zea mays, as revealed by 1H NMR and GC-MS metabolomics. <i>PLoS ONE</i> , 2018 , 13, e020	09g <u>4</u>	33

(2016-2012)

45	Molecular properties of a fermented manure preparation used as field spray in biodynamic agriculture. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 4214-25	5.1	29	
44	Phosphorus speciation and high-affinity transporters are influenced by humic substances. <i>Journal of Plant Nutrition and Soil Science</i> , 2016 , 179, 206-214	2.3	27	
43	Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. <i>Plant and Soil</i> , 2018 , 429, 437-450	4.2	26	
42	Microbiological features and bioactivity of a fermented manure product (preparation 500) used in biodynamic agriculture. <i>Journal of Microbiology and Biotechnology</i> , 2013 , 23, 644-51	3.3	26	
41	The fate of cigarette butts in different environments: Decay rate, chemical changes and ecotoxicity revealed by a 5-years decomposition experiment. <i>Environmental Pollution</i> , 2020 , 261, 114108	9.3	25	
40	Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter. <i>Environmental Science & Environmental Scienc</i>	10.3	25	
39	Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. <i>PLoS ONE</i> , 2018 , 13, e0198728	3.7	24	
38	Interactions between natural organic matter and organic pollutants as revealed by NMR spectroscopy. <i>Magnetic Resonance in Chemistry</i> , 2015 , 53, 667-78	2.1	22	
37	Molecular composition of water-soluble lignins separated from different non-food biomasses. <i>Fuel Processing Technology</i> , 2015 , 131, 175-181	7.2	22	
36	Molecular Characterization of Extracts from Biorefinery Wastes and Evaluation of Their Plant Biostimulation. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 9023-9031	8.3	21	
35	OMDY: a new model of organic matter decomposition based on biomolecular content as assessed by 13C-CPMAS-NMR. <i>Plant and Soil</i> , 2017 , 411, 377-394	4.2	21	
34	Metabolic profile of intact tissue from uterine leiomyomas using high-resolution magic-angle-spinning IH NMR spectroscopy. <i>NMR in Biomedicine</i> , 2010 , 23, 1137-45	4.4	21	
33	Reduced complexity of multidimensional and diffusion NMR spectra of soil humic fractions as simplified by Humeomics. <i>Chemical and Biological Technologies in Agriculture</i> , 2014 , 1,	4.4	20	
32	Structural recognition of lignin isolated from bioenergy crops by subcritical water: ethanol extraction. <i>Fuel Processing Technology</i> , 2015 , 138, 637-644	7.2	18	
31	HRMAS NMR spectroscopy applications in agriculture. <i>Chemical and Biological Technologies in Agriculture</i> , 2017 , 4,	4.4	17	
30	Phosphorus stably bonded to a silica gel matrix through niobium bridges. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15986-15995	13	17	
29	Reduced activity of alkaline phosphatase due to host-guest interactions with humic superstructures. <i>Chemosphere</i> , 2013 , 93, 1972-9	8.4	16	
28	The Wine: Typicality or Mere Diversity? The Effect of Spontaneous Fermentations and Biotic Factors on the Characteristics of Wine. <i>Agriculture and Agricultural Science Procedia</i> , 2016 , 8, 769-773		14	

27	Humic acids increase the maize seedlings exudation yield. <i>Chemical and Biological Technologies in Agriculture</i> , 2019 , 6,	4.4	14
26	Replacing calcium with ammonium counterion in lignosulfonates from paper mills affects their molecular properties and bioactivity. <i>Science of the Total Environment</i> , 2018 , 645, 411-418	10.2	12
25	In situ photo-polymerization of soil organic matter by heterogeneous nano-TiO2 and biomimetic metal-porphyrin catalysts. <i>Biology and Fertility of Soils</i> , 2016 , 52, 585-593	6.1	12
24	Optimized procedure for the determination of P species in soil by liquid-state 31P-NMR spectroscopy. <i>Chemical and Biological Technologies in Agriculture</i> , 2015 , 2, 7	4.4	10
23	Novel Humo-Pectic Hydrogels for Controlled Release of Agroproducts. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 10079-10088	8.3	9
22	Effects of microbial bioeffectors and P amendements on P forms in a maize cropped soil as evaluated by 31PNMR spectroscopy. <i>Plant and Soil</i> , 2018 , 427, 87-104	4.2	9
21	pH-controlled release of auxin plant hormones from cucurbit[7]uril macrocycle. <i>Chemical and Biological Technologies in Agriculture</i> , 2014 , 1, 2	4.4	9
20	Effects of post cure treatment in the glass transformation range on the structure and fire behavior of in situ generated silica/epoxy hybrids. <i>Journal of Sol-Gel Science and Technology</i> , 2018 , 87, 156-169	2.3	9
19	A community-built calibration system: The case study of quantification of metabolites in grape juice by qNMR spectroscopy. <i>Talanta</i> , 2020 , 214, 120855	6.2	8
18	High-Resolution Magic-Angle-Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of Maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi. Journal of Agricultural and Food Chemistry,	5.7	7
17	NMR-based metabolomics of water-buffalo milk after conventional or biological feeding. <i>Chemical and Biological Technologies in Agriculture</i> , 2018 , 5,	4.4	7
16	The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein. <i>PLoS ONE</i> , 2017 , 12, e0188308	3.7	7
15	Acetone-induced polymerisation of 3-aminopropyltrimethoxysilane (APTMS) as revealed by NMR spectroscopy. <i>Magnetic Resonance in Chemistry</i> , 2014 , 52, 383-8	2.1	6
14	Molecular characterization of ombrotrophic peats by humeomics. <i>Chemical and Biological Technologies in Agriculture</i> , 2020 , 7,	4.4	6
13	HRMAS-NMR metabolomics of Aglianicone grapes pulp to evaluate terroir and vintage effects, and, as assessed by the electromagnetic induction (EMI) technique, spatial variability of vineyard soils. <i>Food Chemistry</i> , 2019 , 283, 215-223	8.5	6
12	Molecular characterization of organic matter in two calcareous soils: the effects of an acid decarbonation treatment. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 5243-5253	4.4	4
11	Chlamyphilone, a Novel Metabolite with Insecticidal Activity. <i>Molecules</i> , 2019 , 24,	4.8	4
10	Copolymerization of 2,4-dichlorophenol with humic substances by oxidative and photo-oxidative biomimetic catalysis. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 8016-24	5.1	4

LIST OF PUBLICATIONS

9	Reduced activity of Eglucosidase resulting from host-guest interactions with dissolved fulvic acids as revealed by NMR spectroscopy. <i>European Journal of Soil Science</i> , 2013 , 64, 508-515	3.4	4	
8	Molecular Properties and Functions of Humic Substances and Humic-Like Substances (HULIS) from Biomass and Their Transformation Products 2016 , 85-114		3	
7	Metabolites produced by Gnomoniopsis castanea associated with necrosis of chestnut galls. <i>Chemical and Biological Technologies in Agriculture</i> , 2014 , 1,	4.4	3	
6	Assessment of geographical origin and production period of royal jelly by NMR metabolomics. <i>Chemical and Biological Technologies in Agriculture</i> , 2020 , 7,	4.4	3	
5	Advanced printable hydrogels from pre-crosslinked alginate as a new tool in semi solid extrusion 3D printing process. <i>Carbohydrate Polymers</i> , 2022 , 276, 118746	10.3	3	
4	Bio-Based Hydrogels Composed of Humic Matter and Pectins of Different Degree of Methyl-Esterification. <i>Molecules</i> , 2020 , 25,	4.8	2	
3	Reduced catalytic activity of an exogenous extracellular ID-glucosidase due to adsorption on a model humic-clay complex and different soils under wetting and drying cycles. <i>Biology and Fertility of Soils</i> , 2019 , 55, 617-627	6.1	1	
2	Hydrochar obtained with by-products from the sugarcane industry: Molecular features and effects of extracts on maize seed germination. <i>Journal of Environmental Management</i> , 2021 , 281, 111878	7.9	1	
1	Changes in water-extractable organic matter in tropical forest and agricultural soils as detected by the DRIFT spectroscopy technique. <i>Land Degradation and Development</i> , 2021 , 32, 4755	4.4	О	