
Marcio Vinicius Bertacine Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4938913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of human purine nucleoside phosphorylase complexed with acyclovir. Biochemical and Biophysical Research Communications, 2003, 308, 553-559.	2.1	58
2	Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Journal of Structural Biology, 2007, 159, 369-380.	2.8	52
3	Chimeric Glycosyltransferases for the Generation of Hybrid Glycopeptides. Chemistry and Biology, 2009, 16, 676-685.	6.0	50
4	Chorismate Synthase: An Attractive Target For Drug Development Against Orphan Diseases. Current Drug Targets, 2007, 8, 437-444.	2.1	49
5	Structure of shikimate kinase fromMycobacterium tuberculosisreveals the binding of shikimic acid. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2310-2319.	2.5	48
6	Structural basis for inhibition of human PNP by immucillin-H. Biochemical and Biophysical Research Communications, 2003, 309, 917-922.	2.1	47
7	Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases. Future Medicinal Chemistry, 2018, 10, 935-959.	2.3	43
8	Structure of chorismate synthase from Mycobacterium tuberculosis. Journal of Structural Biology, 2006, 154, 130-143.	2.8	41
9	Enzymology of Pyran Ringâ€A Formation in Salinomycin Biosynthesis. Angewandte Chemie - International Edition, 2015, 54, 13622-13625.	13.8	40
10	Crystal structure of human PNP complexed with guanine. Biochemical and Biophysical Research Communications, 2003, 312, 767-772.	2.1	39
11	Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of <i>Mycobacterium tuberculosis</i> . Biochemical Journal, 2011, 436, 729-739.	3.7	39
12	Crystal structure of human PNP complexed with hypoxanthine and sulfate ion. Biochemical and Biophysical Research Communications, 2005, 326, 335-338.	2.1	33
13	Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 1-6.	0.7	31
14	Mycobacterium tuberculosis Dihydrofolate Reductase Reveals Two Conformational States and a Possible Low Affinity Mechanism to Antifolate Drugs. Structure, 2014, 22, 94-103.	3.3	30
15	Structural Basis for the Activity and Substrate Specificity of Fluoroacetyl-CoA Thioesterase FlK. Journal of Biological Chemistry, 2010, 285, 22495-22504.	3.4	24
16	Unexpected enzyme-catalysed [4+2] cycloaddition and rearrangement in polyether antibiotic biosynthesis. Nature Catalysis, 2019, 2, 1045-1054.	34.4	20
17	Unsaturated fatty acids as high-affinity ligands of the C-terminal Per-ARNT-Sim domain from the Hypoxia-inducible factor 31±. Scientific Reports, 2015, 5, 12698.	3.3	17
18	Structural Basis of the Selectivity of GenN, an Aminoglycoside <i>N</i> -Methyltransferase Involved in Gentamicin Biosynthesis. ACS Chemical Biology, 2017, 12, 2779-2787.	3.4	16

#	Article	IF	CITATIONS
19	Molecular Models of Tryptophan Synthase From Mycobacterium tuberculosis Complexed With Inhibitors. Cell Biochemistry and Biophysics, 2006, 44, 375-384.	1.8	14
20	Using a Fragment-Based Approach to Identify Alternative Chemical Scaffolds Targeting Dihydrofolate Reductase from <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2020, 6, 2192-2201.	3.8	13
21	Discovery of Schaeffer's Acid Analogues as Lead Structures of <i>Mycobacterium tuberculosis</i> Typeâ€II Dehydroquinase Using a Rational Drug Design Approach. ChemMedChem, 2013, 8, 54-58.	3.2	11
22	Enzymology of Pyran Ringâ€A Formation in Salinomycin Biosynthesis. Angewandte Chemie, 2015, 127, 13826-13829.	2.0	11
23	Design and Structural Analysis of Aromatic Inhibitors of Typeâ€II Dehydroquinase from <i>Mycobacterium tuberculosis</i> . ChemMedChem, 2015, 10, 116-133.	3.2	10
24	Structure of a soluble epoxide hydrolase identified in Trichoderma reesei. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1039-1045.	2.3	10
25	Crystal structures of the closed form of <i>Mycobacterium tuberculosis</i> dihydrofolate reductase in complex with dihydrofolate and antifolates. Acta Crystallographica Section D: Structural Biology, 2019, 75, 682-693.	2.3	10
26	Crystal Structure of GenD2, an NAD-Dependent Oxidoreductase Involved in the Biosynthesis of Gentamicin. ACS Chemical Biology, 2019, 14, 925-933.	3.4	10
27	Crystallization and preliminary X-ray crystallographic analysis of chorismate synthase fromMycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2003-2005.	2.5	8
28	Structural Basis for the Interaction and Processing of β-Lactam Antibiotics by l,d-Transpeptidase 3 (LdtMt3) from Mycobacterium tuberculosis. ACS Infectious Diseases, 2019, 5, 260-271.	3.8	8
29	Structural and functional characterization of the glutathione peroxidase-like thioredoxin peroxidase from the fungus Trichoderma reesei. International Journal of Biological Macromolecules, 2021, 167, 93-100.	7.5	8
30	Mycobacterial OtsA Structures Unveil Substrate Preference Mechanism and Allosteric Regulation by 2-Oxoglutarate and 2-Phosphoglycerate. MBio, 2019, 10, .	4.1	7
31	Design, synthesis and biological activity of novel substituted 3-benzoic acid derivatives as MtDHFR inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115600.	3.0	7
32	Trypanosomatid selenophosphate synthetase structure, function and interaction with selenocysteine lyase. PLoS Neglected Tropical Diseases, 2020, 14, e0008091.	3.0	5
33	Mechanistic Insights into Dideoxygenation in Gentamicin Biosynthesis. ACS Catalysis, 2021, 11, 12274-12283.	11.2	5
34	Fragment-Based Drug Discovery in Academia: Experiences From a Tuberculosis Programme. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 21-36.	0.5	4
35	Crystallization and preliminary X-ray diffraction analysis of selenophosphate synthetases fromTrypanosoma bruceiandLeishmania major. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 864-867.	0.7	4
36	Cloning, expression, purification and biophysical analysis of two putative halogenases from the glycopeptide A47,934 gene cluster of Streptomyces toyocaensis. Protein Expression and Purification, 2017, 132, 9-18.	1.3	4

MARCIO VINICIUS BERTACINE

#	Article	IF	CITATIONS
37	Structural insights into <i>Escherichia coli</i> phosphopantothenoylcysteine synthetase by native ion mobility–mass spectrometry. Biochemical Journal, 2019, 476, 3125-3139.	3.7	4
38	The crystal structure of AjiA1 reveals a novel structural motion mechanism in the adenylate-forming enzyme family. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1201-1210.	2.3	2
39	An epoxide hydrolase from endophytic <i>Streptomyces</i> shows unique structural features and wide biocatalytic activity. Acta Crystallographica Section D: Structural Biology, 2020, 76, 868-875.	2.3	2
40	Title is missing!. , 2020, 14, e0008091.		0
41	Title is missing!. , 2020, 14, e0008091.		0
42	Title is missing!. , 2020, 14, e0008091.		0
43	Title is missing!. , 2020, 14, e0008091.		0