Machiko Nishio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4938722/publications.pdf Version: 2024-02-01

Μλάμικο Νιέμιο

#	Article	IF	CITATIONS
1	A Point Mutation in the Human Parainfluenza Virus Type 2 Nucleoprotein Leads to Two Separate Effects on Virus Replication. Journal of Virology, 2022, 96, JVI0206721.	3.4	0
2	Human Parainfluenza Virus Type 2 V Protein Modulates Iron Homeostasis. Journal of Virology, 2021, 95,	3.4	9
3	Sendai Virus and a Unified Model of Mononegavirus RNA Synthesis. Viruses, 2021, 13, 2466.	3.3	2
4	Inhibition of Cavin3 Degradation by the Human Parainfluenza Virus Type 2 V Protein Is Important for Efficient Viral Growth. Frontiers in Microbiology, 2020, 11, 803.	3.5	4
5	Common and unique mechanisms of filamentous actin formation by viruses of the genus Orthorubulavirus. Archives of Virology, 2020, 165, 799-807.	2.1	1
6	Effect of a bundle-approach intervention against contamination of blood culture in the emergency department. Journal of Infection and Chemotherapy, 2020, 26, 785-789.	1.7	6
7	A Minigenome Study of Hazara Nairovirus Genomic Promoters. Journal of Virology, 2019, 93, .	3.4	9
8	Importance of tyrosine in the RNA-binding domain of human parainfluenza virus type 2 nucleoprotein for polymerase activity. Archives of Virology, 2019, 164, 1851-1855.	2.1	0
9	Profilin2 is required for filamentous actin formation induced by human parainfluenza virus type 2. Virology, 2019, 533, 108-114.	2.4	7
10	Claudin-1 inhibits human parainfluenza virus type 2 dissemination. Virology, 2019, 531, 93-99.	2.4	11
11	Regulation of Hazara virus growth through apoptosis inhibition by viral nucleoprotein. Archives of Virology, 2019, 164, 1597-1607.	2.1	7
12	Nucleocytoplasmic shuttling of the human parainfluenza virus type 2 phosphoprotein. Virology, 2019, 528, 54-63.	2.4	4
13	Rab27a facilitates human parainfluenza virus type 2 growth by promoting cell surface transport of envelope proteins. Medical Microbiology and Immunology, 2018, 207, 141-150.	4.8	14
14	The control of paramyxovirus genome hexamer length and mRNA editing. Rna, 2018, 24, 461-467.	3.5	14
15	Lethal infection of embryonated chicken eggs by Hazara virus, a model for Crimean-Congo hemorrhagic fever virus. Archives of Virology, 2018, 163, 219-222.	2.1	8
16	The V protein of human parainfluenza virus type 2 promotes RhoA-induced filamentous actin formation. Virology, 2018, 524, 90-96.	2.4	10
17	The Hemagglutinin-Neuraminidase (HN) Head Domain and the Fusion (F) Protein Stalk Domain of the Parainfluenza Viruses Affect the Specificity of the HN-F Interaction. Frontiers in Microbiology, 2018, 9, 391.	3.5	6
18	Human parainfluenza virus type 2 V protein inhibits caspase-1. Journal of General Virology, 2018, 99, 501-511.	2.9	9

ΜΑCΗΙΚΟ ΝΙSHIO

#	Article	IF	CITATIONS
19	A Point Mutation in the RNA-Binding Domain of Human Parainfluenza Virus Type 2 Nucleoprotein Elicits Abnormally Enhanced Polymerase Activity. Journal of Virology, 2017, 91, .	3.4	17
20	Human parainfluenza virus type 2ÂV protein inhibits induction of tetherin. Medical Microbiology and Immunology, 2017, 206, 311-318.	4.8	6
21	Tetherin antagonism by V proteins is a common trait among the genus Rubulavirus. Medical Microbiology and Immunology, 2017, 206, 319-326.	4.8	7
22	Human parainfluenza virus type 2 polymerase complex recognizes leader promoters of other species belonging to the genus Rubulavirus. Medical Microbiology and Immunology, 2017, 206, 441-446.	4.8	2
23	Graf1 Controls the Growth of Human Parainfluenza Virus Type 2 through Inactivation of RhoA Signaling. Journal of Virology, 2016, 90, 9394-9405.	3.4	11
24	Evidence that Receptor Destruction by the Sendai Virus Hemagglutinin-Neuraminidase Protein Is Responsible for Homologous Interference. Journal of Virology, 2016, 90, 7640-7646.	3.4	6
25	Enhanced growth of influenza A virus by coinfection with human parainfluenza virus type 2. Medical Microbiology and Immunology, 2016, 205, 209-218.	4.8	33
26	Parainfluenza virus chimeric mini-replicons indicate a novel regulatory element in the leader promoter. Journal of General Virology, 2016, 97, 1520-1530.	2.9	11
27	Identification of two essential aspartates for polymerase activity in parainfluenza virus L protein by a minireplicon system expressing secretory luciferase. Microbiology and Immunology, 2015, 59, 676-683.	1.4	4
28	The Fusion Protein Specificity of the Parainfluenza Virus Hemagglutinin-Neuraminidase Protein Is Not Solely Defined by the Primary Structure of Its Stalk Domain. Journal of Virology, 2015, 89, 12374-12387.	3.4	15
29	Human Parainfluenza Virus Type 2 V Protein Inhibits TRAF6-Mediated Ubiquitination of IRF7 To Prevent TLR7- and TLR9-Dependent Interferon Induction. Journal of Virology, 2013, 87, 7966-7976.	3.4	45
30	Completion of the full-length genome sequence of human parainfluenza virus types 4A and 4B: sequence analysis of the large protein genes and gene start, intergenic and end sequences. Archives of Virology, 2011, 156, 161-166.	2.1	8
31	A Tryptophan-Rich Motif in the Human Parainfluenza Virus Type 2 V Protein Is Critical for the Blockade of Toll-Like Receptor 7 (TLR7)- and TLR9-Dependent Signaling. Journal of Virology, 2011, 85, 4606-4611.	3.4	29
32	Human Parainfluenza Virus Type 2 L Protein Regions Required for Interaction with Other Viral Proteins and mRNA Capping. Journal of Virology, 2011, 85, 725-732.	3.4	22
33	Effects of Hemagglutinin-Neuraminidase Protein Mutations on Cell-Cell Fusion Mediated by Human Parainfluenza Type 2 Virus. Journal of Virology, 2008, 82, 8283-8295.	3.4	15
34	Human Parainfluenza Virus Type 2 V Protein Inhibits Genome Replication by Binding to the L Protein: Possible Role in Promoting Viral Fitness. Journal of Virology, 2008, 82, 6130-6138.	3.4	22
35	The conserved carboxyl terminus of human parainfluenza virus type 2 V protein plays an important role in virus growth. Virology, 2007, 362, 85-98.	2.4	26
36	Identification of RNA-binding regions on the P and V proteins of human parainfluenza virus type 2. Medical Microbiology and Immunology, 2006, 195, 29-36.	4.8	7

ΜΑCΗΙΚΟ ΝΙSHIO

#	Article	IF	CITATIONS
37	Human Parainfluenza Virus Type 4 Is Incapable of Evading the Interferon-Induced Antiviral Effect. Journal of Virology, 2005, 79, 14756-14768.	3.4	21
38	Identification of Paramyxovirus V Protein Residues Essential for STAT Protein Degradation and Promotion of Virus Replication. Journal of Virology, 2005, 79, 8591-8601.	3.4	63
39	Characterization of Sendai virus persistently infected L929 cells and Sendai virus pi strain: recombinant Sendai viruses having Mpi protein shows lower cytotoxicity and are incapable of establishing persistent infection. Virology, 2003, 314, 110-124.	2.4	13
40	The Carboxyl Segment of the Mumps Virus V Protein Associates with Stat Proteins in Vitro Via a Tryptophan-Rich Motif. Virology, 2002, 300, 92-99.	2.4	84
41	High Resistance of Human Parainfluenza Type 2 Virus Protein-Expressing Cells to the Antiviral and Anti-Cell Proliferative Activities of Alpha/Beta Interferons: Cysteine-Rich V-Specific Domain Is Required for High Resistance to the Interferons. Journal of Virology, 2001, 75, 9165-9176.	3.4	77
42	Mapping of Domains on the Human Parainfluenza Type 2 Virus P and NP Proteins That Are Involved in the Interaction with the L Protein. Virology, 2000, 273, 241-247.	2.4	16
43	Isolation of monoclonal antibodies directed against the V protein of human parainfluenza virus type 2 and localization of the V protein in virus-infected cells. Medical Microbiology and Immunology, 1999, 188, 79-82.	4.8	22
44	Mapping of domains on the human parainfluenza virus type 2 nucleocapsid protein (NP) required for NP–phosphoprotein or NP–NP interaction. Journal of General Virology, 1999, 80, 2017-2022.	2.9	34
45	Binding of the V proteins to the nucleocapsid proteins of human parainfluenza type 2 virus. Medical Microbiology and Immunology, 1996, 185, 89-94.	4.8	24
46	Identification of Regions on the Hemagglutinin-Neuraminidase Protein of Human Parainfluenza Virus Type 2 Important for Promoting Cell Fusion. Virology, 1995, 213, 190-203.	2.4	120
47	Sequence determination of the hemagglutinin-neuraminidase (HN) gene of human parainfluenza type 2 virus and the construction of a phylogenetic tree for HN proteins of all the paramyxoviruses that are infectious to humans. Virology, 1990, 174, 308-313.	2.4	59
48	Sequence analysis of P gene of human parainfluenza type 2 virus: P and cysteine-rich proteins are translated by two mRNAs that differ by two nontemplated G residues. Virology, 1990, 177, 116-123.	2.4	85
49	Extensive antigenic diversity among human parainfluenza type 2 virus isolates and immunological relationships among paramyxoviruses revealed by monoclonal antibodies. Virology, 1989, 171, 38-48.	2.4	121