
Mario Rohrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4938625/publications.pdf Version: 2024-02-01

MADIO POHDED

#	Article	IF	CITATIONS
1	A combined view on precipitation and temperature climatology and trends in the southern Andes of Peru. International Journal of Climatology, 2021, 41, 679-698.	1.5	22
2	Heavy precipitation forecasts over Switzerland – An evaluation of bias-corrected ECMWF predictions. Weather and Climate Extremes, 2021, 34, 100372.	1.6	4
3	Development of a combined empirical index for a 5-day forecast of heavy precipitation over the Bernese Alps. Environment International, 2020, 135, 105357.	4.8	2
4	Twinning SENAMHI and MeteoSwiss to co-develop climate services for the agricultural sector in Peru. Climate Services, 2020, 20, 100195.	1.0	3
5	Peaks of Fine Particulate Matter May Modulate the Spreading and Virulence of COVID-19. Earth Systems and Environment, 2020, 4, 789-796.	3.0	39
6	Automated precipitation monitoring with the Thies disdrometer: biases and ways for improvement. Atmospheric Measurement Techniques, 2020, 13, 4683-4698.	1.2	20
7	On the extraordinary winter flood episode over the North Atlantic Basin in 1936. Annals of the New York Academy of Sciences, 2019, 1436, 206-216.	1.8	15
8	Improving Mediumâ€Range Forecasts of Rainâ€onâ€6now Events in Prealpine Areas. Water Resources Research, 2019, 55, 7638-7661.	1.7	7
9	Anticipating cascading effects of extreme precipitation with pathway schemes - Three case studies from Europe. Environment International, 2019, 127, 291-304.	4.8	21
10	The anomalous 2017 coastal El Niño event in Peru. Climate Dynamics, 2019, 52, 5605-5622.	1.7	51
11	Linking atmospheric circulation patterns with hydroâ€geomorphic disasters in Peru. International Journal of Climatology, 2018, 38, 3388-3404.	1.5	18
12	Estimating the snowfall limit in alpine and pre-alpine valleys: A local evaluation of operational approaches. Atmospheric Research, 2018, 204, 136-148.	1.8	14
13	The freezing level in the tropical Andes, Peru: An indicator for present and future glacier extents. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5172-5189.	1.2	52
14	Identifying, attributing, and overcoming common data quality issues of manned station observations. International Journal of Climatology, 2017, 37, 4131-4145.	1.5	61
15	Climate corridors for strategic adaptation planning. International Journal of Climate Change Strategies and Management, 2017, 9, 811-828.	1.5	1
16	Estimation of snowfall limit for the Kashmir Valley, Indian Himalayas, with TRMMÂPR Bright Band information. Meteorologische Zeitschrift, 2016, 25, 501-509.	0.5	5
17	Towards implementing climate services in Peru – The project CLIMANDES. Climate Services, 2016, 4, 30-41.	1.0	22
18	The Projected Precipitation Reduction over the Central Andes may Severely Affect Peruvian Glaciers and Hydropower Production. Energy Procedia, 2016, 97, 270-277.	1.8	13

MARIO ROHRER

#	Article	IF	CITATIONS
19	Science in the Context of Climate Change Adaptation: Case Studies from the Peruvian Andes. , 2016, , 41-58.		1
20	Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. Environmental Research Letters, 2015, 10, 084017.	2.2	65
21	Temperature, precipitation and related extremes in mountain areas. , 2015, , 28-49.		7
22	How useful and reliable are disaster databases in the context of climate and global change? A comparative case study analysis in Peru. Natural Hazards and Earth System Sciences, 2015, 15, 475-485.	1.5	44
23	Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya. Journal of Glaciology, 2015, 61, 675-688.	1.1	58
24	A framework for the science contribution in climate adaptation: Experiences from science-policy processes in the Andes. Environmental Science and Policy, 2015, 47, 80-94.	2.4	45
25	The days of plenty might soon be over in glacierized Central Asian catchments. Environmental Research Letters, 2014, 9, 104018.	2.2	98
26	Data and knowledge gaps in glacier, snow and related runoff research – A climate change adaptation perspective. Journal of Hydrology, 2014, 518, 225-234.	2.3	41
27	Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Global and Planetary Change, 2014, 119, 85-97.	1.6	113
28	Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Science of the Total Environment, 2013, 468-469, S60-S70.	3.9	47
29	Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere, 2013, 7, 103-118.	1.5	101
30	Early warning systems: The "last mile―of adaptation. Eos, 2012, 93, 209-210.	0.1	8
31	Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrology and Earth System Sciences, 2011, 15, 2649-2663.	1.9	185
32	A data portal for regional climatic trend analysis in a Peruvian High Andes region. Advances in Science and Research, 2011, 6, 219-226.	1.0	18
33	Integrated assessment and adaptation to climate change impacts in the Peruvian Andes. Advances in Geosciences, 0, 22, 35-39.	12.0	25