
Marius Wernig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4937699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell, 2006, 125, 315-326.	13.5	4,773
2	Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448, 553-560.	13.7	3,733
3	Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 2010, 463, 1035-1041.	13.7	2,739
4	In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448, 318-324.	13.7	2,517
5	Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 2006, 441, 349-353.	13.7	2,273
6	Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 2008, 454, 766-770.	13.7	2,267
7	In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 2001, 19, 1129-1133.	9.4	1,780
8	Treatment of Sickle Cell Anemia Mouse Model with iPS Cells Generated from Autologous Skin. Science, 2007, 318, 1920-1923.	6.0	1,399
9	Dissecting direct reprogramming through integrative genomic analysis. Nature, 2008, 454, 49-55.	13.7	1,344
10	Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells. Cell, 2008, 134, 521-533.	13.5	1,332
11	Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron, 2013, 78, 785-798.	3.8	1,209
12	Induction of human neuronal cells by defined transcription factors. Nature, 2011, 476, 220-223.	13.7	1,152
13	Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5856-5861.	3.3	1,129
14	m6A RNA Modification Controls Cell Fate Transition in Mammalian Embryonic Stem Cells. Cell Stem Cell, 2014, 15, 707-719.	5.2	990
15	Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes to Pluripotency. Cell, 2008, 133, 250-264.	13.5	765
16	Sequential Expression of Pluripotency Markers during Direct Reprogramming of Mouse Somatic Cells. Cell Stem Cell, 2008, 2, 151-159.	5.2	756
17	Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 2007, 25, 1177-1181.	9.4	723
18	c-Myc Is Dispensable for Direct Reprogramming of Mouse Fibroblasts. Cell Stem Cell, 2008, 2, 10-12.	5.2	561

#	Article	IF	CITATIONS
19	Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons. Cell, 2013, 155, 621-635.	13.5	531
20	Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2527-2532.	3.3	414
21	Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature, 2016, 534, 391-395.	13.7	413
22	A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnology, 2008, 26, 916-924.	9.4	395
23	ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and AÎ ² Secretion. Cell, 2017, 168, 427-441.e21.	13.5	372
24	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	13.7	338
25	Direct Lineage Conversion of Terminally Differentiated Hepatocytes to Functional Neurons. Cell Stem Cell, 2011, 9, 374-382.	5.2	326
26	Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1. Stem Cell Reports, 2014, 3, 282-296.	2.3	312
27	In Situ Genetic Correction of the Sickle Cell Anemia Mutation in Human Induced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases. Stem Cells, 2011, 29, 1717-1726.	1.4	289
28	Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. Nature Biotechnology, 2017, 35, 444-452.	9.4	278
29	Generation of oligodendroglial cells by direct lineage conversion. Nature Biotechnology, 2013, 31, 434-439.	9.4	274
30	Autism-associated SHANK3 haploinsufficiency causes <i>I</i> _h channelopathy in human neurons. Science, 2016, 352, aaf2669.	6.0	270
31	Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 2017, 14, 621-628.	9.0	265
32	The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015, 528, 218-224.	13.7	244
33	Direct lineage conversions: unnatural but useful?. Nature Biotechnology, 2011, 29, 892-907.	9.4	240
34	Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature, 2011, 474, 399-402.	13.7	220
35	Generation of iPSCs from cultured human malignant cells. Blood, 2010, 115, 4039-4042.	0.6	206
36	Human <i>COL7A1</i> -corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Science Translational Medicine, 2014, 6, 264ra163.	5.8	194

#	Article	IF	CITATIONS
37	A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry. Cell Stem Cell, 2015, 16, 323-337.	5.2	187
38	Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. Cell Stem Cell, 2015, 17, 316-328.	5.2	187
39	Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature, 2019, 574, 553-558.	13.7	187
40	Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature, 2017, 544, 245-249.	13.7	180
41	Functional Integration of Embryonic Stem Cell-Derived Neurons In Vivo. Journal of Neuroscience, 2004, 24, 5258-5268.	1.7	176
42	Molecular Roadblocks for Cellular Reprogramming. Molecular Cell, 2012, 47, 827-838.	4.5	171
43	Inhibition of Pluripotency Networks by the Rb Tumor Suppressor Restricts Reprogramming and Tumorigenesis. Cell Stem Cell, 2015, 16, 39-50.	5.2	166
44	Induced Neuronal Cells: How to Make and Define a Neuron. Cell Stem Cell, 2011, 9, 517-525.	5.2	160
45	FOXO3 Shares Common Targets with ASCL1 Genome-wide and Inhibits ASCL1-Dependent Neurogenesis. Cell Reports, 2013, 4, 477-491.	2.9	139
46	Rapid Chromatin Switch in the Direct Reprogramming of Fibroblasts to Neurons. Cell Reports, 2017, 20, 3236-3247.	2.9	121
47	Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells <i>in vitro</i> . FASEB Journal, 2009, 23, 4168-4180.	0.2	119
48	Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nature Communications, 2016, 7, 10862.	5.8	109
49	Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature, 2015, 521, 352-356.	13.7	101
50	Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell Stem Cell, 2017, 20, 329-344.e7.	5.2	101
51	Functional Integration of Embryonic Stem Cell-Derived Neurons in Hippocampal Slice Cultures. Journal of Neuroscience, 2003, 23, 7075-7083.	1.7	100
52	Unique versus Redundant Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse Properties. Journal of Neuroscience, 2017, 37, 6816-6836.	1.7	89
53	Cardiac Myocytes Derived from Murine Reprogrammed Fibroblasts: Intact Hormonal Regulation, Cardiac Ion Channel Expression and Development of Contractility. Cellular Physiology and Biochemistry, 2009, 24, 73-86.	1.1	88
54	Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB Journal, 2010, 24, 2739-2751.	0.2	88

#	Article	IF	CITATIONS
55	Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. Journal of Neuroscience, 2019, 39, 7408-7427.	1.7	85
56	Analysis of conditional heterozygous STXBP1 mutations in human neurons. Journal of Clinical Investigation, 2015, 125, 3560-3571.	3.9	82
57	The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Science Translational Medicine, 2018, 10, .	5.8	79
58	Tau EGFP embryonic stem cells: An efficient tool for neuronal lineage selection and transplantation. Journal of Neuroscience Research, 2002, 69, 918-924.	1.3	77
59	TFAP2C- and p63-Dependent Networks Sequentially Rearrange Chromatin Landscapes to Drive Human Epidermal Lineage Commitment. Cell Stem Cell, 2019, 24, 271-284.e8.	5.2	76
60	Cdk1 Controls Global Epigenetic Landscape in Embryonic Stem Cells. Molecular Cell, 2020, 78, 459-476.e13.	4.5	76
61	Neuroligin-4 Regulates Excitatory Synaptic Transmission in Human Neurons. Neuron, 2019, 103, 617-626.e6.	3.8	75
62	Transdifferentiation of human adult peripheral blood T cells into neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6470-6475.	3.3	71
63	Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. ELife, 2019, 8, .	2.8	64
64	Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16622-16627.	3.3	61
65	Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation. Cell Stem Cell, 2019, 25, 531-541.e6.	5.2	60
66	The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. ELife, 2019, 8, .	2.8	59
67	Conditional deletion of <i>L1CAM</i> in human neurons impairs both axonal and dendritic arborization and action potential generation. Journal of Experimental Medicine, 2016, 213, 499-515.	4.2	56
68	H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell, 2021, 39, 407-422.e13.	7.7	56
69	<i>In Vitro</i> Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of <i>PCDH1</i> 5 and <i>RELN</i> . ENeuro, 2019, 6, ENEURO.0403-18.2019.	0.9	54
70	Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived <i>NRXN1</i> -mutant neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
71	RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell, 2021, 184, 5869-5885.e25.	13.5	45
72	Treatment of a genetic brain disease by CNS-wide microglia replacement. Science Translational Medicine, 2022, 14, eabl9945.	5.8	45

5

#	Article	IF	CITATIONS
73	Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of Valproic Acid-Induced Teratogenicity. Cell Stem Cell, 2019, 25, 103-119.e6.	5.2	43
74	The vast majority of bone-marrow-derived cells integrated into mdx muscle fibers are silent despite long-term engraftment. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11852-11857.	3.3	41
75	Failure to replicate the STAP cell phenomenon. Nature, 2015, 525, E6-E9.	13.7	41
76	Calcineurin Signaling Regulates Neural Induction through Antagonizing the BMP Pathway. Neuron, 2014, 82, 109-124.	3.8	38
77	<i>In Vivo</i> Reprogramming for Brain and Spinal Cord Repair. ENeuro, 2015, 2, ENEURO.0106-15.2015.	0.9	38
78	Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes. Nature Cell Biology, 2020, 22, 401-411.	4.6	38
79	Induced neuronal reprogramming. Journal of Comparative Neurology, 2014, 522, 2877-2886.	0.9	36
80	Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis. Cell Reports, 2021, 35, 108991.	2.9	36
81	Crosstalk between stem cell and cell cycle machineries. Current Opinion in Cell Biology, 2015, 37, 68-74.	2.6	34
82	Concise Review: Stem Cell-Based Treatment of Pelizaeus-Merzbacher Disease. Stem Cells, 2017, 35, 311-315.	1.4	28
83	The many roads to Rome: induction of neural precursor cells from fibroblasts. Current Opinion in Genetics and Development, 2012, 22, 517-522.	1.5	27
84	Direct somatic lineage conversion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140368.	1.8	26
85	Optogenetic manipulation of cellular communication using engineered myosin motors. Nature Cell Biology, 2021, 23, 198-208.	4.6	26
86	Cellular Reprogramming: Recent Advances in Modeling Neurological Diseases. Journal of Neuroscience, 2011, 31, 16070-16075.	1.7	25
87	μNeurocircuitry: Establishing <i>in vitro</i> models of neurocircuits with human neurons. Technology, 2017, 05, 87-97.	1.4	25
88	FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8514-8519.	3.3	24
89	Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiology of Disease, 2019, 130, 104503.	2.1	24
90	Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nature Cancer, 2022, 3, 976-993.	5.7	23

#	Article	IF	CITATIONS
91	Efficient generation of dopaminergic induced neuronal cells with midbrain characteristics. Stem Cell Reports, 2021, 16, 1763-1776.	2.3	21
92	Fifty Ways to Make a Neuron: Shifts in Stem Cell Hierarchy and Their Implications for Neuropathology and Experimental Neurology, 2002, 61, 101-110.	0.9	20
93	Acute reduction in oxygen tension enhances the induction of neurons from human fibroblasts. Journal of Neuroscience Methods, 2013, 216, 104-109.	1.3	19
94	The novel tool of cell reprogramming for applications in molecular medicine. Journal of Molecular Medicine, 2017, 95, 695-703.	1.7	19
95	Partial Reprogramming of Pluripotent Stem Cell-Derived Cardiomyocytes into Neurons. Scientific Reports, 2017, 7, 44840.	1.6	16
96	Migration and Differentiation of Myogenic Precursors Following Transplantation into the Developing Rat Brain. Stem Cells, 2003, 21, 181-189.	1.4	13
97	Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicological Sciences, 2021, 180, 295-312.	1.4	12
98	Harnessing the Stem Cell Potential: A case for neural stem cell therapy. Nature Medicine, 2013, 19, 1580-1581.	15.2	10
99	Myt1l haploinsufficiency leads to obesity and multifaceted behavioral alterations in mice. Molecular Autism, 2022, 13, 19.	2.6	10
100	Direct targeting of the mouse optic nerve for therapeutic delivery. Journal of Neuroscience Methods, 2019, 313, 1-5.	1.3	9
101	Somatic Lineage Reprogramming. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040808.	2.3	9
102	An indirect approach to generating specific human cell types. Nature Methods, 2013, 10, 44-45.	9.0	8
103	Generation of functional human oligodendrocytes from dermal fibroblasts by direct lineage conversion. Development (Cambridge), 2022, 149, .	1.2	8
104	Is hypoimmunogenic stem cell therapy safe in times of pandemics?. Stem Cell Reports, 2022, , .	2.3	5
105	Profiling DNA–transcription factor interactions. Nature Biotechnology, 2018, 36, 501-502.	9.4	4
106	An imprinted signature helps isolate ESC-equivalent iPSCs. Cell Research, 2010, 20, 974-976.	5.7	3
107	On the Streets of San Francisco: Highlights from the ISSCR Annual Meeting 2010. Cell Stem Cell, 2010, 7, 443-450.	5.2	1
108	Collagen VI Regulates Motor Circuit Plasticity and Motor Performance by Cannabinoid Modulation. Journal of Neuroscience, 2022, 42, 1557-1573.	1.7	1

#	Article	IF	CITATIONS
109	New Approaches, New Opportunities at the 2019 ISSCR Annual Meeting. Stem Cell Reports, 2018, 11, 1305.	2.3	Ο
110	Pluripotent Reprogramming of Human AML Resets Leukemic Behavior and Models Therapeutic Targeting of Subclones. Blood, 2016, 128, 575-575.	0.6	0