Panagiotis Tsapekos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4937676/publications.pdf

Version: 2024-02-01

75 papers 3,671 citations

30 h-index

182225

58 g-index

76 all docs

76 docs citations

76 times ranked 4003 citing authors

#	Article	IF	CITATIONS
1	Co-digestion of orange peels and marine seaweed with cattle manure to suppress inhibition from toxicants. Biomass Conversion and Biorefinery, 2022, 12, 3209-3218.	2.9	7
2	Bridging to circular bioeconomy through a novel biorefinery platform on a wastewater treatment plant. Renewable and Sustainable Energy Reviews, 2022, 154, 111895.	8.2	17
3	Techno-economic assessment of a hybrid forward osmosis and membrane distillation system for agricultural water recovery. Separation and Purification Technology, 2022, 283, 120196.	3.9	21
4	Enhanced fermentative lactic acid production from source-sorted organic household waste: Focusing on low-pH microbial adaptation and bio-augmentation strategy. Science of the Total Environment, 2022, 808, 152129.	3.9	12
5	From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps. Renewable and Sustainable Energy Reviews, 2022, 157, 112041.	8.2	24
6	Improving lactic acid production via bio-augmentation with acid-tolerant isolates from source-sorted organic household waste. Biomass Conversion and Biorefinery, 2022, 12, 4449-4461.	2.9	5
7	In-situ biogas upgrading assisted by bioaugmentation with hydrogenotrophic methanogens during mesophilic and thermophilic co-digestion. Bioresource Technology, 2022, 348, 126754.	4.8	22
8	H2 competition between homoacetogenic bacteria and methanogenic archaea during biomethanation from a combined experimental-modelling approach. Journal of Environmental Chemical Engineering, 2022, 10, 107281.	3.3	18
9	Going beyond conventional wastewater treatment plants within circular bioeconomy concept – a sustainability assessment study. Water Science and Technology, 2022, 85, 1878-1903.	1.2	6
10	Ex-situ biogas upgrading in thermophilic trickle bed reactors packed with micro-porous packing materials. Chemosphere, 2022, 296, 133987.	4.2	18
11	Untargeted Metabolomics Profiling of Bioactive Compounds under Varying Digestate Storage Conditions: Assessment of Antioxidant and Antifungal Activity. International Journal of Environmental Research and Public Health, 2022, 19, 4923.	1.2	1
12	Bioconversion of wastewater to single cell protein by methanotrophic bacteria. Bioresource Technology, 2021, 320, 124351.	4.8	57
13	Bio-augmentation to improve lactic acid production from source-sorted organic household waste. Journal of Cleaner Production, 2021, 279, 123714.	4.6	21
14	An integer superstructure model to find a sustainable biorefinery platform for valorizing household waste to bioenergy, microbial protein, and biochemicals. Journal of Cleaner Production, 2021, 278, 123986.	4.6	11
15	A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 2021, 135, 110033.	8.2	176
16	Impact of storage duration and micro-aerobic conditions on lactic acid production from food waste. Bioresource Technology, 2021, 323, 124618.	4.8	16
17	Municipal biopulp as substrate for lactic acid production focusing on downstream processing. Journal of Environmental Chemical Engineering, 2021, 9, 105136.	3.3	17
18	Anaerobic co-digestion of macroalgal biomass with cattle manure under high salinity conditions. Journal of Environmental Chemical Engineering, 2021, 9, 105406.	3.3	13

#	Article	IF	CITATIONS
19	Valorization of municipal organic waste into purified lactic acid. Bioresource Technology, 2021, 342, 125933.	4.8	19
20	Pilot-scale biomethanation in a trickle bed reactor: Process performance and microbiome functional reconstruction. Energy Conversion and Management, 2021, 244, 114491.	4.4	39
21	Bio-electrochemically extracted nitrogen from residual resources for microbial protein production. Bioresource Technology, 2021, 337, 125353.	4.8	14
22	Could biological biogas upgrading be a sustainable substitution for water scrubbing technology? A case study in Denmark. Energy Conversion and Management, 2021, 245, 114550.	4.4	29
23	Multicomponent nanoparticles as means to improve anaerobic digestion performance. Chemosphere, 2021, 283, 131277.	4.2	21
24	Ex-situ biogas upgrading in thermophilic up-flow reactors: The effect of different gas diffusers and gas retention times. Bioresource Technology, 2021, 340, 125694.	4.8	22
25	Upcycling the anaerobic digestion streams in a bioeconomy approach: A review. Renewable and Sustainable Energy Reviews, 2021, 151, 111635.	8.2	24
26	Editorial: Biological Strategies to Enhance the Anaerobic Digestion Performance: Fundamentals and Process Development. Frontiers in Microbiology, 2021, 12, 762875.	1.5	0
27	Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants. Energies, 2021, 14, 8252.	1.6	20
28	Anti-algal activity of Fe2O3–TiO2 photocatalyst on Chlorella vulgaris species under visible light irradiation. Chemosphere, 2020, 242, 125119.	4.2	30
29	Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renewable and Sustainable Energy Reviews, 2020, 117, 109493.	8.2	136
30	Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate. Energy, 2020, 191, 116580.	4.5	25
31	Fermentative Production of Lactic Acid as a Sustainable Approach to Valorize Household Bio-Waste. Frontiers in Sustainability, 2020, 1 , .	1.3	18
32	Biological CO2 fixation in up-flow reactors via exogenous H2 addition. Journal of Biotechnology, 2020, 319, 1-7.	1.9	22
33	Proteinaceous methanotrophs for feed additive using biowaste as carbon and nutrients source. Bioresource Technology, 2020, 313, 123646.	4.8	33
34	Potassium inhibition during sludge and biopulp co-digestion; experimental and model-based approaches. Waste Management, 2020, 113, 304-311.	3.7	16
35	Effect of ammonia on anaerobic digestion of municipal solid waste: Inhibitory performance, bioaugmentation and microbiome functional reconstruction. Chemical Engineering Journal, 2020, 401, 126159.	6.6	76
36	Coupling electrochemical ammonia extraction and cultivation of methane oxidizing bacteria for production of microbial protein. Journal of Environmental Management, 2020, 265, 110560.	3.8	21

3

#	Article	IF	Citations
37	Effect of surfactants on photocatalytic toxicity of TiO2- based nanoparticles toward Vibrio fischeri marine bacteria. Inorganic Chemistry Communication, 2020, 116, 107936.	1.8	8
38	Treating anaerobic effluents using forward osmosis for combined water purification and biogas production. Science of the Total Environment, 2019, 647, 1021-1030.	3.9	36
39	Urban biowaste valorization by coupling anaerobic digestion and single cell protein production. Bioresource Technology, 2019, 290, 121743.	4.8	65
40	Methane oxidising bacteria to upcycle effluent streams from anaerobic digestion of municipal biowaste. Journal of Environmental Management, 2019, 251, 109590.	3.8	33
41	Evaluation of an anaerobic baffled reactor for pretreating black water: Potential application in rural China. Journal of Environmental Management, 2019, 251, 109599.	3.8	26
42	Environmental impacts of biogas production from grass: Role of co-digestion and pretreatment at harvesting time. Applied Energy, 2019, 252, 113467.	5.1	40
43	Carbon dioxide anion radical as a tool to enhance lignin valorization. Science of the Total Environment, 2019, 682, 47-58.	3.9	14
44	Enhancing anaerobic digestion of agricultural residues by microaerobic conditions. Biomass Conversion and Biorefinery, 2019, , 1.	2.9	6
45	Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: Focusing on microbial community dynamics. Bioresource Technology, 2019, 286, 121376.	4.8	89
46	Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochemical Engineering Journal, 2019, 147, 136-145.	1.8	45
47	Application of nano-structured materials in anaerobic digestion: Current status and perspectives. Chemosphere, 2019, 229, 188-199.	4.2	95
48	Immobilization of Clostridium kluyveri on wheat straw to alleviate ammonia inhibition during chain elongation for n-caproate production. Environment International, 2019, 127, 134-141.	4.8	21
49	Graphene based ZnO nanoparticles to depolymerize lignin-rich residues via UV/iodide process. Environment International, 2019, 125, 172-183.	4.8	21
50	Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. Bioresource Technology, 2019, 275, 375-385.	4.8	59
51	Co-digestion of Laminaria digitata with cattle manure: A unimodel simulation study of both batch and continuous experiments. Bioresource Technology, 2019, 276, 361-368.	4.8	19
52	Co-digestion of municipal waste biopulp with marine macroalgae focusing on sodium inhibition. Energy Conversion and Management, 2019, 180, 931-937.	4.4	25
53	Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Conversion and Management, 2018, 159, 1-6.	4.4	46
54	Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 2018, 36, 452-466.	6.0	885

#	Article	IF	Citations
55	Life cycle assessment of different strategies for energy and nutrient recovery from source sorted organic fraction of household waste. Journal of Cleaner Production, 2018, 180, 360-374.	4.6	76
56	TiO ₂ â€"AgCl Based Nanoparticles for Photocatalytic Production of Phenolic Compounds from Lignocellulosic Residues. Energy & En	2.5	16
57	Process performance and modelling of anaerobic digestion using source-sorted organic household waste. Bioresource Technology, 2018, 247, 486-495.	4.8	52
58	Nickel spiking to improve the methane yield of sewage sludge. Bioresource Technology, 2018, 270, 732-737.	4.8	31
59	Photocatalytic inactivation of Vibrio fischeri using Fe2O3-TiO2-based nanoparticles. Environmental Research, 2018, 166, 497-506.	3.7	30
60	Spatial Distribution and Diverse Metabolic Functions of Lignocellulose-Degrading Uncultured Bacteria as Revealed by Genome-Centric Metagenomics. Applied and Environmental Microbiology, 2018, 84, .	1.4	72
61	Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components. Waste Management, 2018, 78, 903-910.	3.7	71
62	Energy recovery from wastewater microalgae through anaerobic digestion process: Methane potential, continuous reactor operation and modelling aspects. Biochemical Engineering Journal, 2018, 139, 1-7.	1.8	34
63	Improving the energy balance of grass-based anaerobic digestion through combined harvesting and pretreatment. Anaerobe, 2017, 46, 131-137.	1.0	17
64	Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses. Renewable Energy, 2017, 111, 914-921.	4.3	44
65	Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. Bioresource Technology, 2017, 234, 350-359.	4.8	91
66	TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production. Anaerobe, 2017, 46, 155-161.	1.0	36
67	Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Applied Energy, 2017, 185, 126-135.	5.1	132
68	Effect of micro-aeration and inoculum type on the biodegradation of lignocellulosic substrate. Bioresource Technology, 2017, 225, 246-253.	4.8	47
69	A review on prospects and challenges of biological H2S removal from biogas with focus on biotrickling filtration and microaerobic desulfurization. Biofuel Research Journal, 2017, 4, 741-750.	7.2	66
70	Methane Production and Kinetic Modeling for Co-digestion of Manure with Lignocellulosic Residues. Energy & Ener	2.5	33
71	Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Bioresource Technology, 2016, 216, 545-552.	4.8	65
72	Anaerobic Mono- and Co-digestion of Mechanically Pretreated Meadow Grass for Biogas Production. Energy & Energy	2.5	40

PANAGIOTIS TSAPEKOS

#	Article	IF	CITATION
73	Biogas production from ensiled meadow grass; effect of mechanical pretreatments and rapid determination of substrate biodegradability via physicochemical methods. Bioresource Technology, 2015, 182, 329-335.	4.8	65
74	Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresource Technology, 2014, 153, 198-205.	4.8	64
75	Antifoaming effect of chemical compounds in manure biogas reactors. Water Research, 2013, 47, 6280-6288.	5.3	28