Tatiana M Oberyszyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4937033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suppression of beta 2 adrenergic receptor actions prevent UVB mediated cutaneous squamous cell tumorigenesis through inhibition of VECFâ€A induced angiogenesis. Molecular Carcinogenesis, 2021, 60, 172-178.	2.7	8
2	Cover Image, Volume 60, Issue 3. Molecular Carcinogenesis, 2021, 60, i.	2.7	0
3	Dopamine Prevents Ultraviolet B–induced Development and Progression of Premalignant Cutaneous Lesions through its D2 Receptors. Cancer Prevention Research, 2021, 14, 687-696.	1.5	2
4	Ultraviolet radiation accelerates <scp>NR</scp> asâ€mutant melanomagenesis: A cooperative effect blocked by sunscreen. Pigment Cell and Melanoma Research, 2017, 30, 477-487.	3.3	29
5	25â€Hydroxyvitamin D ₃ and its Câ€3 epimer are elevated in the skin and serum of Skhâ€1 mice supplemented with dietary vitamin D ₃ . Molecular Nutrition and Food Research, 2017, 61, 1700293.	3.3	4
6	Tomatoes protect against development of UV-induced keratinocyte carcinoma via metabolomic alterations. Scientific Reports, 2017, 7, 5106.	3.3	57
7	Cyclosporine A immunosuppression drives catastrophic squamous cell carcinoma through IL-22. JCI Insight, 2016, 1, e86434.	5.0	34
8	Endogenous Retinoic Acid Required to Maintain the Epidermis Following Ultraviolet Light Exposure in SKHâ€1 Hairless Mice. Photochemistry and Photobiology, 2015, 91, 901-908.	2.5	10
9	Sex differences in skin carotenoid deposition and acute UVB-induced skin damage in SKH-1 hairless mice after consumption of <i>tangerine</i> tomatoes. Molecular Nutrition and Food Research, 2015, 59, 2491-2501.	3.3	16
10	25â€Hydroxyvitamin D and its Câ€3 Epimer in a Mouse Model of Nonâ€Melanoma Skin Cancer. FASEB Journal, 2015, 29, 758.2.	0.5	0
11	Effects of Acute UVB on Retinoid Metabolism. FASEB Journal, 2015, 29, 604.6.	0.5	1
12	Role of Vitamin D3 in Modulation of ΔNp63α Expression during UVB Induced Tumor Formation in SKH-1 Mice. PLoS ONE, 2014, 9, e107052.	2.5	7
13	MIF Antagonist (CPSI-1306) Protects against UVB-Induced Squamous Cell Carcinoma. Molecular Cancer Research, 2014, 12, 1292-1302.	3.4	16
14	Slug Expression in Mouse Skin and Skin Tumors Is Not Regulated by p53. Journal of Investigative Dermatology, 2014, 134, 566-568.	0.7	0
15	Isothiocyanate metabolism, distribution, and interconversion in mice following consumption of thermally processed broccoli sprouts or purified sulforaphane. Molecular Nutrition and Food Research, 2014, 58, 1991-2000.	3.3	69
16	Ultraviolet light exposure stimulates HMGB1 release by keratinocytes. Archives of Dermatological Research, 2013, 305, 805-815.	1.9	40
17	Extended UVB Exposures Alter Tumorigenesis and Treatment Efficacy in a Murine Model of Cutaneous Squamous Cell Carcinoma. Journal of Skin Cancer, 2013, 2013, 1-10.	1.2	3
18	Preventative topical diclofenac treatment differentially decreases tumor burden in male and female Skh-1 mice in a model of UVB-induced cutaneous squamous cell carcinoma. Carcinogenesis, 2013, 34, 370-377.	2.8	31

TATIANA M OBERYSZYN

#	Article	IF	CITATIONS
19	Differential Effects of Topical Vitamin E and C E Ferulic® Treatments on Ultraviolet Light B-Induced Cutaneous Tumor Development in Skh-1 Mice. PLoS ONE, 2013, 8, e63809.	2.5	24
20	UV Light B–Mediated Inhibition of Skin Catalase Activity Promotes Gr-1+CD11b+ Myeloid Cell Expansion. Journal of Investigative Dermatology, 2012, 132, 695-702.	0.7	39
21	High-Anxious Individuals Show Increased Chronic Stress Burden, Decreased Protective Immunity, and Increased Cancer Progression in a Mouse Model of Squamous Cell Carcinoma. PLoS ONE, 2012, 7, e33069.	2.5	57
22	Effects of Black Raspberries on UV-Induced Cutaneous Inflammation and Tumor Development. , 2011, , 131-142.		0
23	Consumption of a tomato carotenoid containing diet reduces UVâ€induced inflammation and DNA damage in a Skhâ€1 hairless mouse model. FASEB Journal, 2011, 25, 975.19.	0.5	Ο
24	Celecoxib reduces the effects of acute and chronic UVB exposure in mice treated with therapeutically relevant immunosuppressive drugs. International Journal of Cancer, 2010, 126, 11-18.	5.1	119
25	Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma. Brain, Behavior, and Immunity, 2010, 24, 127-137.	4.1	88
26	Macrophage migration inhibitory factor (MIF) plays a critical role in pathogenesis of ultravioletâ€B (UVB) â€induced nonmelanoma skin cancer (NMSC). FASEB Journal, 2009, 23, 720-730.	0.5	47
27	Topical Treatment with Black Raspberry Extract Reduces Cutaneous UVB-Induced Carcinogenesis and Inflammation. Cancer Prevention Research, 2009, 2, 665-672.	1.5	64
28	Chromosomal aberrations in UVBâ€induced tumors of immunosuppressed mice. Genes Chromosomes and Cancer, 2009, 48, 490-501.	2.8	5
29	The hairless mouse in skin research. Journal of Dermatological Science, 2009, 53, 10-18.	1.9	211
30	Sirolimus Reduces the Incidence and Progression of UVB-Induced Skin Cancer in SKH Mice even with Co-administration of Cyclosporine A. Journal of Investigative Dermatology, 2008, 128, 2467-2473.	0.7	54
31	Regulation of scar formation by vascular endothelial growth factor. Laboratory Investigation, 2008, 88, 579-590.	3.7	261
32	Topical Treatment with OGG1 Enzyme Affects UVBâ€induced Skin Carcinogenesis ^{â€} . Photochemistry and Photobiology, 2008, 84, 317-321.	2.5	35
33	Non-melanoma skin cancer: Importance of gender, immunosuppressive status and vitamin D. Cancer Letters, 2008, 261, 127-136.	7.2	82
34	Hmga1 null mice are less susceptible to chemically induced skin carcinogenesis. European Journal of Cancer, 2008, 44, 318-325.	2.8	7
35	β2-Microglobulin Deficient Mice Catabolize IgG More Rapidly Than FcRn-α-Chain Deficient Mice. Experimental Biology and Medicine, 2008, 233, 603-609. 	2.4	25
36	Gender Differences in UVB-Induced Skin Carcinogenesis, Inflammation, and DNA Damage. Cancer Research, 2007, 67, 3468-3474.	0.9	138

TATIANA M OBERYSZYN

#	Article	IF	CITATIONS
37	Inflammation and wound healing. Frontiers in Bioscience - Landmark, 2007, 12, 2993.	3.0	66
38	Possible cross-regulation of the E prostanoid receptors. Molecular Carcinogenesis, 2007, 46, 711-715.	2.7	12
39	Effects of UVB on E Prostanoid Receptor Expression in Murine Skin. Journal of Investigative Dermatology, 2007, 127, 214-221.	0.7	28
40	Depletion of CD4+ Cells Exacerbates the Cutaneous Response to Acute and Chronic UVB Exposure. Journal of Investigative Dermatology, 2007, 127, 1507-1515.	0.7	23
41	Clinically Relevant Immunosuppressants Influence UVB-Induced Tumor Size Through Effects on Inflammation and Angiogenesis. American Journal of Transplantation, 2007, 7, 2693-2703.	4.7	46
42	Accelerated Transferrin Degradation in HFE-Deficient Mice Is Associated with Increased Transferrin Saturation. Journal of Nutrition, 2006, 136, 2993-2998.	2.9	19
43	Importance of the EP1 Receptor in Cutaneous UVB-Induced Inflammation and Tumor Development. Journal of Investigative Dermatology, 2006, 126, 205-211.	0.7	77
44	Hydrogen peroxide disrupts scarless fetal wound repair. Wound Repair and Regeneration, 2005, 13, 513-519.	3.0	37
45	Chronic Stress and Susceptibility to Skin Cancer. Journal of the National Cancer Institute, 2005, 97, 1760-1767.	6.3	170
46	Depletion of CD8+ or CD4+ lymphocytes enhances susceptibility to transplantable ultraviolet radiation-induced skin tumours. Anticancer Research, 2005, 25, 1963-7.	1.1	4
47	Treatment with 5-Fluorouracil and Celecoxib Displays Synergistic Regression of Ultraviolet Light B-Induced Skin Tumors. Journal of Investigative Dermatology, 2004, 122, 1488-1494.	0.7	35
48	The Impact of Cyclooxygenase-2 Mediated Inflammation on Scarless Fetal Wound Healing. American Journal of Pathology, 2004, 165, 753-761.	3.8	109
49	Inhibition of cutaneous ultraviolet light B-mediated inflammation and tumor formation with topical celecoxib treatment. Molecular Carcinogenesis, 2003, 38, 49-58.	2.7	139
50	Chemotherapeutic efficacy of topical celecoxib in a murine model of ultraviolet light B-induced skin cancer. Molecular Carcinogenesis, 2003, 38, 33-39.	2.7	42
51	Reduction of scar formation in fullâ€thickness wounds with topical celecoxib treatment. Wound Repair and Regeneration, 2003, 11, 25-34.	3.0	153
52	Inhibition of Cutaneous UV Light-induced Tumor Necrosis Factor-α Protein Production by Allotrap 1258, a Novel Immunomodulatory Peptide¶. Photochemistry and Photobiology, 2001, 73, 184-190.	2.5	1
53	Topical application of a selective cyclooxygenase inhibitor suppresses UVB mediated cutaneous inflammation. Prostaglandins and Other Lipid Mediators, 2000, 62, 367-384.	1.9	119
54	Inhibitory effects of pentoxifylline on ultraviolet B light–induced cutaneous inflammation. Molecular Carcinogenesis, 1998, 22, 16-25.	2.7	19

TATIANA M OBERYSZYN

#	Article	IF	CITATIONS
55	Comparative Expression of Novel Vascular Endothelial Growth Factor/Vascular Permeability Factor Transcripts in Skin, Papillomas, and Carcinomas of v-Ha-rasTg.AC Transgenic Mice and FVB/N Mice. Biochemical and Biophysical Research Communications, 1998, 247, 644-653.	2.1	34
56	Sensitivity of Human Hepatocytes in Culture to Reactive Nitrogen Intermediates. Biochemical and Biophysical Research Communications, 1997, 233, 545-549.	2.1	15
57	Gene expression and cellular sources of inducible nitric oxide synthase during tumor promotion. Carcinogenesis, 1996, 17, 2053-2059.	2.8	44
58	Inhibitation of pro-inflammatory cytokine gene expression and papilloma growth during murine multistage carcinogenesis by pentoxifylline. Carcinogenesis, 1996, 17, 1719-1728.	2.8	31
59	Temporal sequence of pulmonary cytokine gene expression in response to endotoxin in C3H/HeN endotoxin-sensitive and C3H/HeJ endotoxin-resistant mice. Journal of Leukocyte Biology, 1995, 58, 563-574.	3.3	35
60	Interleukin-1alpha gene expression during wound healing. Wound Repair and Regeneration, 1995, 3, 473-484.	3.0	24
61	Interleukin-1α gene expression and localization of interleukin-1α protein during tumor promotion. Molecular Carcinogenesis, 1993, 7, 238-248,	2.7	52