
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4936649/publications.pdf Version: 2024-02-01



MASAARI NARAI

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 2012, 8, 3888-3903.                                                                                                                                                                | 4.1 | 1,249     |
| 2  | Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone.<br>International Journal of Biomaterials, 2011, 2011, 1-10.                                                                                                              | 1.1 | 477       |
| 3  | Biomedical titanium alloys with Young's moduli close to that of cortical bone. International Journal of Energy Production and Management, 2016, 3, 173-185.                                                                                                            | 1.9 | 241       |
| 4  | Beta type Ti–Mo alloys with changeable Young's modulus for spinal fixation applications. Acta<br>Biomaterialia, 2012, 8, 1990-1997.                                                                                                                                    | 4.1 | 172       |
| 5  | Characterization of air-formed surface oxide film on Ti–29Nb–13Ta–4.6Zr alloy surface using XPS and AES. Corrosion Science, 2008, 50, 2111-2116.                                                                                                                       | 3.0 | 132       |
| 6  | Microstructures and mechanical properties of metastable Ti–30Zr–(Cr, Mo) alloys with changeable<br>Young's modulus for spinal fixation applications. Acta Biomaterialia, 2011, 7, 3230-3236.                                                                           | 4.1 | 119       |
| 7  | Self-adjustment of Young's modulus in biomedical titanium alloys during orthopaedic operation.<br>Materials Letters, 2011, 65, 688-690.                                                                                                                                | 1.3 | 117       |
| 8  | Development of high Zr-containing Ti-based alloys with low Young's modulus for use in removable implants. Materials Science and Engineering C, 2011, 31, 1436-1444.                                                                                                    | 3.8 | 113       |
| 9  | Optimization of Cr content of metastable β-type Ti–Cr alloys with changeable Young's modulus for spinal fixation applications. Acta Biomaterialia, 2012, 8, 2392-2400.                                                                                                 | 4.1 | 107       |
| 10 | Mechanical properties of a medical Î <sup>2</sup> -type titanium alloy with specific microstructural evolution through high-pressure torsion. Materials Science and Engineering C, 2013, 33, 2499-2507.                                                                | 3.8 | 99        |
| 11 | Observation of yielding and strain hardening in a titanium alloy having high oxygen content.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2011, 528, 5435-5445.                                           | 2.6 | 98        |
| 12 | Effect of Zr on super-elasticity and mechanical properties of Ti–24at% Nb–(0, 2, 4)at% Zr alloy<br>subjected to aging treatment. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2012, 536, 197-206.            | 2.6 | 85        |
| 13 | Improvement in Fatigue Strength of Biomedical β-type Ti–Nb–Ta–Zr Alloy While Maintaining Low<br>Young's Modulus Through Optimizing ω-Phase Precipitation. Metallurgical and Materials Transactions<br>A: Physical Metallurgy and Materials Science, 2012, 43, 294-302. | 1.1 | 81        |
| 14 | Microstructures, mechanical properties and cytotoxicity of low cost beta Ti–Mn alloys for<br>biomedical applications. Acta Biomaterialia, 2015, 26, 366-376.                                                                                                           | 4.1 | 80        |
| 15 | Fabrication of low-cost beta-type Ti–Mn alloys for biomedical applications by metal injection molding process and their mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 497-507.                                          | 1.5 | 71        |
| 16 | Effect of Oxygen Content on Microstructure and Mechanical Properties of Biomedical<br>Ti-29Nb-13Ta-4.6Zr Alloy under Solutionized and Aged Conditions. Materials Transactions, 2009, 50,<br>2716-2720.                                                                 | 0.4 | 64        |
| 17 | Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti–29Nb–13Ta–4.6Zr alloy.<br>Applied Surface Science, 2012, 262, 34-38.                                                                                                                      | 3.1 | 64        |
| 18 | Comparison of Various Properties between Titanium-Tantalum Alloy and Pure Titanium for Biomedical<br>Applications. Materials Transactions, 2007, 48, 380-384.                                                                                                          | 0.4 | 63        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Surface hardening of biomedical Ti–29Nb–13Ta–4.6Zr and Ti–6Al–4V ELI by gas nitriding. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008,<br>486, 193-201.                                                                                                                                                  | 2.6 | 62        |
| 20 | Changeable Young's modulus with large elongation-to-failure in β-type titanium alloys for spinal fixation applications. Scripta Materialia, 2014, 82, 29-32.                                                                                                                                                                                                          | 2.6 | 59        |
| 21 | Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy. Scripta Materialia, 2016,<br>123, 144-148.                                                                                                                                                                                                                                              | 2.6 | 57        |
| 22 | Athermal and deformation-induced ï‰-phase transformations in biomedical beta-type alloy Ti–9Cr–0.2O.<br>Acta Materialia, 2016, 106, 162-170.                                                                                                                                                                                                                          | 3.8 | 56        |
| 23 | Improvement of microstructure, mechanical and corrosion properties of biomedical Ti-Mn alloys by<br>Mo addition. Materials and Design, 2016, 110, 414-424.                                                                                                                                                                                                            | 3.3 | 54        |
| 24 | Estimation of the System Free Energy of Martensite Phase in an Fe-Cr-C Ternary Alloy. ISIJ International, 2005, 45, 1909-1914.                                                                                                                                                                                                                                        | 0.6 | 53        |
| 25 | Heterogeneous structure and mechanical hardness of biomedical <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si16.gif" display="inline"<br/>overflow="scroll"&gt;<mml:mi>β</mml:mi>-type Ti–29Nb–13Ta–4.6Zr subjected to<br/>high-pressure torsion. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10, 235-245.</mml:math<br> | 1.5 | 53        |
| 26 | Deformation-induced ω phase in modified Ti–29Nb–13Ta–4.6Zr alloy by Cr addition. Acta Biomaterialia,<br>2013, 9, 8027-8035.                                                                                                                                                                                                                                           | 4.1 | 49        |
| 27 | Predominant factor determining wear properties of β-type and (α+β)-type titanium alloys in metal-to-metal contact for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 208-220.                                                                                                                                         | 1.5 | 47        |
| 28 | Development of thermo-mechanical processing for fabricating highly durable <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.gif" display="inline"<br/>overflow="scroll"&gt; <mml:mstyle<br>mathvariant="bold"&gt; <mml:mi>1<sup>2</sup> </mml:mi>  -type Tiâ€"Nbâ€"Taâ€"Zr rod for use in</mml:mstyle<br></mml:math<br>                        | 1.5 | 45        |
| 29 | spinal fixation devices. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 207-216.<br>In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti–Nb–Ta–Zr system<br>beta-type titanium alloy for biomedical applications. Materials Science and Engineering C, 2008, 28,<br>406-413.                                           | 3.8 | 44        |
| 30 | Improved fatigue properties with maintaining low Young's modulus achieved in biomedical beta-type<br>titanium alloy by oxygen addition. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2017, 704, 10-17.                                                                                                      | 2.6 | 44        |
| 31 | Deformation-induced changeable Young's modulus with high strength in β-type Ti–Cr–O alloys for spinal fixture. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 205-213.                                                                                                                                                                         | 1.5 | 43        |
| 32 | Mechanical properties and cytocompatibility of oxygen-modified β-type Ti–Cr alloys for spinal fixation devices. Acta Biomaterialia, 2015, 12, 352-361.                                                                                                                                                                                                                | 4.1 | 43        |
| 33 | Deformation-induced ω-phase transformation in a β-type titanium alloy during tensile deformation.<br>Scripta Materialia, 2017, 130, 27-31.                                                                                                                                                                                                                            | 2.6 | 43        |
| 34 | Improvement in mechanical strength of low-cost β-type Ti–Mn alloys fabricated by metal injection molding through cold rolling. Journal of Alloys and Compounds, 2016, 664, 272-283.                                                                                                                                                                                   | 2.8 | 42        |
| 35 | β-Type titanium alloys for spinal fixation surgery with high Young's modulus variability and good<br>mechanical properties. Acta Biomaterialia, 2015, 24, 361-369.                                                                                                                                                                                                    | 4.1 | 41        |
| 36 | Relationship between various deformation-induced products and mechanical properties in metastable<br>Ti–30Zr–Mo alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical<br>Materials, 2011, 4, 2009-2016.                                                                                                                                | 1.5 | 38        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Metastable Zr–Nb alloys for spinal fixation rods with tunable Young's modulus and low magnetic<br>resonance susceptibility. Acta Biomaterialia, 2017, 62, 372-384.                                                                                                                            | 4.1 | 37        |
| 38 | A systematic study of β-type Ti-based PVD coatings on magnesium for biomedical application. Vacuum, 2021, 183, 109850.                                                                                                                                                                        | 1.6 | 35        |
| 39 | Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion. Acta Materialia, 2014, 80, 172-182.                                                                                                                                                  | 3.8 | 33        |
| 40 | Synthesis of biphasic calcium phosphate (BCP) coatings on β‒type titanium alloys reinforced with<br>rutile-TiO2 compounds: adhesion resistance and in-vitro corrosion. Journal of Sol-Gel Science and<br>Technology, 2018, 87, 713-724.                                                       | 1.1 | 33        |
| 41 | Anomalous Thermal Expansion of Cold-Rolled Ti-Nb-Ta-Zr Alloy. Materials Transactions, 2009, 50, 423-426.                                                                                                                                                                                      | 0.4 | 31        |
| 42 | Synthesis and Characterization of Hydroxyapatite/TiO2 Coatings on the β-Type Titanium Alloys with<br>Different Sintering Parameters using Sol-Gel Method. Protection of Metals and Physical Chemistry of<br>Surfaces, 2018, 54, 457-462.                                                      | 0.3 | 31        |
| 43 | Osteoanabolic Implant Materials for Orthopedic Treatment. Advanced Healthcare Materials, 2016, 5,<br>1740-1752.                                                                                                                                                                               | 3.9 | 29        |
| 44 | Correlation of High-temperature Steam Oxidation with Hydrogen Dissolution in Pure Iron and Ternary High-chromium Ferritic Steel. ISIJ International, 2005, 45, 1066-1072.                                                                                                                     | 0.6 | 28        |
| 45 | Effect of Deformation-Induced ω Phase on the Mechanical Properties of Metastable<br>β-Type Ti–V Alloys. Materials Transactions, 2012, 53, 1379-1384.                                                                                                                                          | 0.4 | 28        |
| 46 | Improvement in fatigue strength while keeping low Young's modulus of a β-type titanium alloy through yttrium oxide dispersion. Materials Science and Engineering C, 2012, 32, 542-549.                                                                                                        | 3.8 | 28        |
| 47 | Effect of alloying elements on microstructural evolution in oxygen content controlled<br>Ti-29Nb-13Ta-4.6Zr (wt%) alloys for biomedical applications during aging. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 709, 312-321. | 2.6 | 28        |
| 48 | Abnormal Deformation Behavior of Oxygen-Modified β-Type Ti-29Nb-13Ta-4.6Zr Alloys for Biomedical<br>Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2017, 48, 139-149.                                                                | 1.1 | 27        |
| 49 | Fatigue characteristics of a biomedical β-type titanium alloy with titanium boride. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640,<br>154-164.                                                                             | 2.6 | 26        |
| 50 | Microstructural evolution and mechanical properties of biomedical Co–Cr–Mo alloy subjected to high-pressure torsion. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 226-235.                                                                                           | 1.5 | 26        |
| 51 | Developing biomedical nano-grained β-type titanium alloys using high pressure torsion for improved cell adherence. RSC Advances, 2016, 6, 7426-7430.                                                                                                                                          | 1.7 | 25        |
| 52 | Improvements in the Superelasticity and Change in Deformation Mode of Î <sup>2</sup> -Type TiNb24Zr2 Alloys Caused<br>by Aging Treatments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2011, 42, 2843-2849.                                     | 1.1 | 23        |
| 53 | Effect of terminal functional groups of silane layers on adhesive strength between biomedical<br>Ti-29Nb-13Ta-4.6Zr alloy and segment polyurethanes. Surface and Coatings Technology, 2012, 206,<br>3137-3141.                                                                                | 2.2 | 22        |
| 54 | Development of low-Young's modulus Ti–Nb-based alloys with Cr addition. Journal of Materials<br>Science, 2019, 54, 8675-8683.                                                                                                                                                                 | 1.7 | 22        |

| #  | Article                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of micro- and nano-scale wave-like structures on fatigue strength of a beta-type titanium alloy developed as a biomaterial. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 393-402.                                                                                                 | 1.5 | 21        |
| 56 | Overcoming the strength-ductility trade-off by the combination of static recrystallization and<br>low-temperature heat-treatment in Co-Cr-W-Ni alloy for stent application. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138400.              | 2.6 | 21        |
| 57 | Bioactive Ceramic Surface Modification of β-Type Ti-Nb-Ta-Zr System Alloy by Alkali Solution<br>Treatment. Materials Transactions, 2007, 48, 293-300.                                                                                                                                                              | 0.4 | 20        |
| 58 | Wear and Mechanical Properties, and Cell Viability of Gas-Nitrided Beta-Type Ti-Nb-Ta-Zr System Alloy for Biomedical Applications. Materials Transactions, 2008, 49, 166-174.                                                                                                                                      | 0.4 | 20        |
| 59 | Effects of TiB on the mechanical properties of Ti–29Nb–13Ta–4.6Zr alloy for use in biomedical<br>applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2011, 528, 5600-5609.                                                                        | 2.6 | 20        |
| 60 | Mechanical and biodegradable properties of porous titanium filled with poly-L-lactic acid by modified in situ polymerization technique. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1206-1218.                                                                                            | 1.5 | 19        |
| 61 | Microstructural factors determining mechanical properties of laser-welded<br>Ti–4.5Al–2.5Cr–1.2Fe–0.1C alloy for use in next-generation aircraft. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 55-65.                                         | 2.6 | 19        |
| 62 | Enhancement of adhesive strength of hydroxyapatite films on Ti–29Nb–13Ta–4.6Zr by surface<br>morphology control. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 18, 232-239.                                                                                                                    | 1.5 | 19        |
| 63 | Development of High Modulus Ti–Fe–Cu Alloys for Biomedical Applications.<br>Materials Transactions, 2013, 54, 574-581.                                                                                                                                                                                             | 0.4 | 19        |
| 64 | Electrochemical Surface Treatment of a $\hat{l}^2$ -titanium Alloy to Realize an Antibacterial Property and Bioactivity. Metals, 2016, 6, 76.                                                                                                                                                                      | 1.0 | 19        |
| 65 | Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 41-50.                                                                                            | 1.5 | 18        |
| 66 | Reduction in anisotropy of mechanical properties of coilable (α+β)-type titanium alloy thin sheet<br>through simple heat treatment for use in next-generation aircraft applications. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 594,<br>103-110. | 2.6 | 18        |
| 67 | Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical<br>Co-20Cr-15W-10Ni Alloy Heat-Treated at 873ÂK. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2018, 49, 2393-2404.                                                          | 1.1 | 18        |
| 68 | Experimental application of pulsed laserâ€induced water jet for endoscopic submucosal dissection:<br>Mechanical investigation and preliminary experiment in swine. Digestive Endoscopy, 2013, 25, 255-263.                                                                                                         | 1.3 | 17        |
| 69 | Improvement of Tensile and Fatigue Properties of β-Titanium Alloy while Maintaining Low<br>Young's Modulus through Grain Refinement and Oxygen Addition. Materials Transactions,<br>2013, 54, 2000-2006.                                                                                                           | 0.4 | 17        |
| 70 | Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy. Materials Science and Engineering C, 2014, 36, 244-251.                                                                                                                                        | 3.8 | 17        |
| 71 | Wear transition of solid-solution-strengthened Ti–29Nb–13Ta–4.6Zr alloys by interstitial oxygen for<br>biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 398-408.                                                                                                     | 1.5 | 17        |
| 72 | Mechanical Properties and Biocompatibilities of Zr-Nb System Alloys with Different Nb Contents for<br>Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2011, 75,<br>445-451.                                                                                            | 0.2 | 16        |

| #  | Article                                                                                                                                                                                                                                               | IF                | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 73 | Mechanism of unique hardening of dental Ag–Pd–Au–Cu alloys in relation with constitutional phases. Journal of Alloys and Compounds, 2012, 519, 15-24.                                                                                                 | 2.8               | 16                |
| 74 | Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO 2 additions.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2014, 619, 112-118.                      | 2.6               | 16                |
| 75 | In vitro biocompatibility of Ti–Mg alloys fabricated by direct current magnetron sputtering. Materials<br>Science and Engineering C, 2015, 54, 1-7.                                                                                                   | 3.8               | 16                |
| 76 | Synchronous improvement in strength and ductility of biomedical Co–Cr–Mo alloys by unique<br>low-temperature heat treatment. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2019, 739, 53-61. | 2.6               | 16                |
| 77 | Frictional wear characteristics of biomedical Ti–29Nb–13Ta–4.6Zr alloy with various<br>microstructures in air and simulated body fluid. Biomedical Materials (Bristol), 2007, 2, S167-S174.                                                           | 1.7               | 15                |
| 78 | Differences in Wear Behaviors at Sliding Contacts for β-Type and (α +) Tj ETQqO 0 0 rgBT /Ov<br>56, 317-326.                                                                                                                                          | verlock 10<br>0.4 | Tf 50 547 T<br>15 |
| 79 | Phase transformation and its effect on mechanical characteristics in warm-deformed<br>Ti-29Nb-13Ta-4.6Zr alloy. Metals and Materials International, 2015, 21, 202-207.                                                                                | 1.8               | 15                |
| 80 | Grain Refinement Mechanism and Evolution of Dislocation Structure of Co–Cr–Mo Alloy Subjected to High-Pressure Torsion. Materials Transactions, 2016, 57, 1109-1118.                                                                                  | 0.4               | 15                |
| 81 | Effect of Nb Content on Microstructures and Mechanical Properties of Ti-xNb-2Fe Alloys. Journal of<br>Materials Engineering and Performance, 2019, 28, 5501-5508.                                                                                     | 1.2               | 15                |
| 82 | Specific characteristics of mechanically and biologically compatible titanium alloy rods for use in spinal fixation applications. Materials Letters, 2012, 86, 178-181.                                                                               | 1.3               | 14                |
| 83 | Effects of Mo Addition on the Mechanical Properties and Microstructures of Ti-Mn Alloys Fabricated by Metal Injection Molding for Biomedical Applications. Materials Transactions, 2017, 58, 271-279.                                                 | 0.4               | 14                |
| 84 | Bending springback behavior related to deformation-induced phase transformations in Ti–12Cr and<br>Ti–29Nb–13Ta–4.6Zr alloys for spinal fixation applications. Journal of the Mechanical Behavior of<br>Biomedical Materials, 2014, 34, 66-74.        | 1.5               | 13                |
| 85 | Hydrogen Dissolution into 10% Chromium Ferritic Steels during High-Temperature Steam Oxidation.<br>Materials Transactions, 2005, 46, 69-73.                                                                                                           | 0.4               | 12                |
| 86 | Improvement in steam oxidation resistance of Fe–10%Cr–0.08%C steel by suppressing hydrogen<br>dissolution. Corrosion Science, 2006, 48, 3869-3885.                                                                                                    | 3.0               | 12                |
| 87 | Relationship between Unique Hardening Behavior and Microstructure of Dental Silver Alloy<br>Subjected to Solution Treatment. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,<br>2010, 74, 337-344.                                 | 0.2               | 12                |
| 88 | Mechanical Properties of Implant Rods made of Low-Modulus β-Type Titanium Alloy, Ti-29Nb-13Ta-4.6Zr,<br>for Spinal Fixture. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 674-678.                                     | 0.2               | 11                |
| 89 | Fabrication of Hydroxyapatite Film on Ti-29Nb-13Ta-4.6Zr Using a MOCVD Technique. Materials<br>Transactions, 2010, 51, 2277-2283.                                                                                                                     | 0.4               | 11                |
| 90 | Heterogeneous grain refinement of biomedical Ti–29Nb–13Ta–4.6Zr alloy through high-pressure<br>torsion. Scientia Iranica, 2013, 20, 1067-1067.                                                                                                        | 0.3               | 11                |

| #   | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The Ti3.6Nb1.0Ta0.2Zr0.2 coating on anodized aluminum by PVD: A potential candidate for short-time biomedical applications. Vacuum, 2021, 192, 110450.                                                                                                                          | 1.6 | 11        |
| 92  | Facile formation with HA/Sr–GO-based composite coatings via green hydrothermal treatment on β-type<br>TiNbTaZr alloys: Morphological and electrochemical insights. Journal of Materials Research, 2022, 37,<br>2512-2524.                                                       | 1.2 | 11        |
| 93  | Microstructure and mechanical properties of Ti–Nb–Fe–Zr alloys with high strength and low elastic modulus. Transactions of Nonferrous Metals Society of China, 2022, 32, 503-512.                                                                                               | 1.7 | 11        |
| 94  | White-Ceramic Conversion on Ti-29Nb-13Ta-4.6Zr Surface for Dental Applications. Advances in Materials Science and Engineering, 2013, 2013, 1-9.                                                                                                                                 | 1.0 | 10        |
| 95  | Effect of heterogeneous precipitation caused by segregation of substitutional and interstitial elements on mechanical properties of a l²-type Ti alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 643, 109-118. | 2.6 | 10        |
| 96  | Calcium phosphate coating of biomedical titanium alloys using metal–organic chemical vapour<br>deposition. Materials Technology, 2015, 30, B8-B12.                                                                                                                              | 1.5 | 10        |
| 97  | Optimization of Microstructure and Mechanical Properties of Co–Cr–Mo Alloys by High-Pressure<br>Torsion and Subsequent Short Annealing. Materials Transactions, 2016, 57, 1887-1896.                                                                                            | 0.4 | 10        |
| 98  | Nanostructure Of Î <sup>2</sup> -type Titanium Alloys Through Severe Plastic Deformation. Advanced Materials<br>Letters, 2014, 5, 378-383.                                                                                                                                      | 0.3 | 10        |
| 99  | Effect of Silane Coupling Treatment on Mechanical Properties of Porous Pure Titanium Filled with<br>PMMA for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,<br>2008, 72, 839-845.                                                  | 0.2 | 9         |
| 100 | Effects of Thermomechanical Treatments on Pseudoelastic Strain Characteristics of Ti-29Nb-13Ta-4.6Zr<br>for Biomedical Applications. Materials Transactions, 2009, 50, 1704-1712.                                                                                               | 0.4 | 9         |
| 101 | Formation of L10-type ordered β′ phase in as-solutionized dental Ag–Pd–Au–Cu alloys and hardening behavior. Materials Science and Engineering C, 2012, 32, 503-509.                                                                                                             | 3.8 | 9         |
| 102 | Low Young's Modulus Ti–Nb–O with High Strength and Good Plasticity. Materials Transactions, 2018,<br>59, 858-860.                                                                                                                                                               | 0.4 | 9         |
| 103 | Invar Properties in Ti-Alloys Achieved Through Alloy Design and Thermomechanical Treatments. Jom, 2019, 71, 3631-3639.                                                                                                                                                          | 0.9 | 9         |
| 104 | Effect of Oxygen Content on Microstructure and Mechanical Properties of Ti-29Nb-13Ta-4.6Zr Alloy<br>for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008,<br>72, 960-964.                                                       | 0.2 | 8         |
| 105 | Heterogeneous α Phase Precipitation and Peculiar Aging Strengthening in Biomedical β-Type Ti-Nb-Ta-Zr<br>Alloy Having Vortical Structure. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,<br>2011, 75, 198-206.                                              | 0.2 | 8         |
| 106 | Microstructure and Mechanical Properties of a Biomedical β-Type Titanium Alloy Subjected to Severe<br>Plastic Deformation after Aging Treatment. Key Engineering Materials, 0, 508, 152-160.                                                                                    | 0.4 | 8         |
| 107 | Research and Development of Low-Cost Titanium Alloys for Biomedical Applications. Key Engineering<br>Materials, 0, 551, 133-139.                                                                                                                                                | 0.4 | 8         |
| 108 | Tensile and Fatigue Properties of Carbon-Solute-Strengthened (α+β)-Type Titanium Alloy.<br>Materials Transactions, 2013, 54, 169-175.                                                                                                                                           | 0.4 | 8         |

| #   | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A review of surface modification of a novel low modulus β-type titanium alloy for biomedical applications. International Journal of Surface Science and Engineering, 2014, 8, 138.                                                                                                        | 0.4 | 8         |
| 110 | Enhancing the durability of spinal implant fixture applications made of Ti-6Al-4V ELI by means of cavitation peening. International Journal of Fatigue, 2016, 92, 360-367.                                                                                                                | 2.8 | 8         |
| 111 | High-cycle fatigue properties of an easily hot-workable (α+β)-type titanium alloy butt joint prepared by<br>friction stir welding below β transus temperature. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2019, 742, 553-563. | 2.6 | 8         |
| 112 | Effect of Impurity Sulfur on the Formation of Cr <sub>2</sub> O <sub>3</sub> and SiO <sub>2</sub><br>at the Early Stage of Steam Oxidation in both Ferittic and Austenitic Steels. Materials Transactions,<br>2003, 44, 1830-1838.                                                        | 0.4 | 7         |
| 113 | Relationship between High Temperature Steam Oxidation Resistance of Fe-Cr Alloys and the Dissolved<br>Hydrogen Originated from the Steam. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of<br>Metals, 2007, 71, 68-75.                                                          | 0.2 | 7         |
| 114 | Characteristics of Biomedical Beta-Type Titanium Alloy Subjected to Coating. Materials Transactions, 2008, 49, 365-371.                                                                                                                                                                   | 0.4 | 7         |
| 115 | Improvement of adhesive strength of segmented polyurethane on Ti–29Nb–13Ta–4.6Zr alloy through<br>H <sub>2</sub> O <sub>2</sub> treatment for biomedical applications. Journal of Biomedical Materials<br>Research - Part B Applied Biomaterials, 2013, 101B, 776-783.                    | 1.6 | 7         |
| 116 | Adhesive strength of bioactive oxide layers fabricated on TNTZ alloy by three different alkali-solution treatments. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 174-181.                                                                                        | 1.5 | 7         |
| 117 | Corrosion resistance of new beta type titanium alloy, Ti-29Nb-13Ta-4.6Zr in artificial saliva solution.<br>IOP Conference Series: Materials Science and Engineering, 2018, 352, 012008.                                                                                                   | 0.3 | 7         |
| 118 | Improvement of Mechanical Properties by Microstructural Evolution of Biomedical Co–Cr–W–Ni<br>Alloys with the Addition of Mn and Si. Materials Transactions, 2021, 62, 229-238.                                                                                                           | 0.4 | 7         |
| 119 | Effects of Alloying Elements on Hard Ceramic Layer Formation on Surfaces of Biomedical<br>Ti-29Nb-13Ta-4.6Zr and Ti-6Al-4V ELI during Gas Nitriding. Nippon Kinzoku Gakkaishi/Journal of the Japan<br>Institute of Metals, 2007, 71, 415-422.                                             | 0.2 | 6         |
| 120 | Bending Fatigue and Spring Back Properties of Implant Rods Made of β-Type Titanium Alloy for Spinal<br>Fixture. Advanced Materials Research, 0, 89-91, 400-404.                                                                                                                           | 0.3 | 6         |
| 121 | Effect of high-pressure torsion processing on microstructure and mechanical properties of a novel<br>biomedical l²-type Ti-29Nb-13Ta-4.6Zr after cold rolling. International Journal of Microstructure and<br>Materials Properties, 2012, 7, 168.                                         | 0.1 | 6         |
| 122 | Effect of Oxide Particles Formed through Addition of Rare-Earth Metal on Mechanical Properties of<br>Biomedical β-Type Titanium Alloy. Materials Transactions, 2013, 54, 1361-1367.                                                                                                       | 0.4 | 6         |
| 123 | Low Young's Modulus and High Strength Obtained in Ti-Nb-Zr-Cr Alloys by Optimizing Zr Content.<br>Journal of Materials Engineering and Performance, 2020, 29, 2871-2878.                                                                                                                  | 1.2 | 6         |
| 124 | Effect of Medical Polymer Filling on Tensile Properties of Biomedical Porous Pure Titanium. Funtai<br>Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 312-317.                                                                               | 0.1 | 6         |
| 125 | Mass Loss of Cr <sub>2</sub> O <sub>3</sub> during Exposure to Steam at 923 K and Its Suppression by Sulfur Doping. Materials Transactions, 2002, 43, 1258-1259.                                                                                                                          | 0.4 | 5         |
| 126 | Beneficial Effect of Impurity Sulfur on High-Temperature Steam Oxidation of High Chromium Ferritic Steels. Materials Science Forum, 2006, 522-523, 147-154.                                                                                                                               | 0.3 | 5         |

MASAAKI NAKAI

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Fretting-Fatigue Properties and Fracture Mechanism of Semi-Precious Alloy for Dental Applications.<br>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 63-71.                                                                                    | 0.2 | 5         |
| 128 | Dental Precision Casting of Ti-29Nb-13Ta-4.6Zr Using Calcia Mold. Materials Transactions, 2009, 50, 2057-2063.                                                                                                                                                               | 0.4 | 5         |
| 129 | Titanium Alloys for Spinal Fixation Devices. Materia Japan, 2010, 49, 437-440.                                                                                                                                                                                               | 0.1 | 5         |
| 130 | Effect of Y <sub>2</sub> O <sub>3</sub> on Mechanical Properties of Ti-29Nb-13Ta-4.6Zr for Biomedical<br>Applications. Materials Science Forum, 2010, 654-656, 2138-2141.                                                                                                    | 0.3 | 5         |
| 131 | High mechanical functionalization of Ti–Al–Cr–Fe–C system alloy for next-generation aircraft<br>applications through microstructural control. Keikinzoku/Journal of Japan Institute of Light Metals,<br>2011, 61, 705-710.                                                   | 0.1 | 5         |
| 132 | Unusual Effect of Oxygen on the Mechanical Behavior of a β-Type Titanium Alloy Developed for<br>Biomedical Applications. Materials Science Forum, 0, 706-709, 135-142.                                                                                                       | 0.3 | 5         |
| 133 | Contribution of β′ and β precipitates to hardening in as-solutionized Ag–20Pd–12Au–14.5Cu alloys for<br>dental prosthesis applications. Materials Science and Engineering C, 2014, 37, 204-209.                                                                              | 3.8 | 5         |
| 134 | Low Springback and Low Young's Modulus in Ti–29Nb–13Ta–4.6Zr Alloy Modified by Mo Addition.<br>Materials Transactions, 2019, 60, 1755-1762.                                                                                                                                  | 0.4 | 5         |
| 135 | Effects of Fe on Microstructures and Mechanical Properties of Ti–15Nb–25Zr–(0, 2, 4, 8)Fe Alloys<br>Prepared by Spark Plasma Sintering. Materials Transactions, 2019, 60, 1763-1768.                                                                                         | 0.4 | 5         |
| 136 | Beneficial Effect of Sulfur State on High-Temperature Steam Oxidation Resistance in High Chromium<br>Ferritic Steels. Materials Transactions, 2004, 45, 865-869.                                                                                                             | 0.4 | 4         |
| 137 | Quality Improvement of a β-Type Titanium Alloy Cast for Biomedical Applications by Using a Clacia<br>Mold. Materials Transactions, 2010, 51, 128-135.                                                                                                                        | 0.4 | 4         |
| 138 | Effect of Oxygen Addition on Isothermal Omega Phase Stability in Ti-29Nb-13Ta-4.6Zr. Materials Science<br>Forum, 2010, 654-656, 2134-2137.                                                                                                                                   | 0.3 | 4         |
| 139 | Heat Treatment to Improve Fatigue Strength of Friction Stir Welded Ti-6Al-4V Alloy Butt Joint.<br>Materials Transactions, 2017, 58, 1223-1226.                                                                                                                               | 0.4 | 4         |
| 140 | Antibacterial Cu-Doped Calcium Phosphate Coating on Pure Titanium. Materials Transactions, 2021, 62, 1052-1055.                                                                                                                                                              | 0.4 | 4         |
| 141 | Development of Low-Yield Stress Co–Cr–W–Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable<br>Stents. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021,<br>52, 4137-4145.                                                    | 1.1 | 4         |
| 142 | Differences in the effect of surface texturing on the wear loss of β-type Ti–Nb–Ta–Zr and (α+β)-type<br>Ti–6Al–4V ELI alloys in contact with zirconia in physiological saline solution. Journal of the<br>Mechanical Behavior of Biomedical Materials, 2021, 124, 104808.    | 1.5 | 4         |
| 143 | Quantitative and Qualitative Relationship between Microstructural Factors and Fatigue Lives under<br>Load- and Strain-Controlled Conditions of Ti–5Al–2Sn–2Zr–4Cr–4Mo (Ti-17) Fabricated Using a<br>1500-ton Forging Simulator. Materials Transactions, 2019, 60, 1740-1748. | 0.4 | 4         |
| 144 | Effect of Impurity Sulfur on the Stability of Cr Oxides Formed on both Austenitic and Ferritic Steels in a High-Temperature Steam-Atmosphere. Materials Science Forum, 2003, 426-432, 1029-1034.                                                                             | 0.3 | 3         |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The Relationship between High-Temperature Steam Oxidation and Hydrogen Dissolution in High-Chromium Ferritic Steels. Materials Science Forum, 2006, 522-523, 197-204.                                                                                                   | 0.3 | 3         |
| 146 | High Mechanical Functionalization of Metallic Biomaterials through Thermomechanical Treatments.<br>Journal of Biomechanical Science and Engineering, 2009, 4, 345-355.                                                                                                  | 0.1 | 3         |
| 147 | Mechanical Properties of a β-Type Titanium Alloy Cast Using a Calcia Mold for Biomedical<br>Applications. Materials Transactions, 2010, 51, 136-142.                                                                                                                    | 0.4 | 3         |
| 148 | Anomalous Characteristics of Ti-Nb-Ta-Zr Alloy for Biomedical Applications. Materials Science Forum, 2010, 638-642, 16-21.                                                                                                                                              | 0.3 | 3         |
| 149 | Young's Modulus Changeable β-Type Binary Ti-Cr Alloys for Spinal Fixation Applications. Key Engineering<br>Materials, 2012, 508, 117-123.                                                                                                                               | 0.4 | 3         |
| 150 | Effects of Alloying Elements on the HAp Formability on Ti Alloys after Alkali Treatment. Materials<br>Transactions, 2013, 54, 1295-1301.                                                                                                                                | 0.4 | 3         |
| 151 | Mechanical and Biological Biocompatibilityof Novel β-Type Ti-Mn Alloys for Biomedical Applications.<br>Materials Science Forum, 0, 783-786, 1232-1237.                                                                                                                  | 0.3 | 3         |
| 152 | Hardening behavior after high-temperature solution treatment of Ag–20Pd–12Au–xCu alloys with<br>different Cu contents for dental prosthetic restorations. Journal of the Mechanical Behavior of<br>Biomedical Materials, 2014, 35, 123-131.                             | 1.5 | 3         |
| 153 | Application of atmospheric-pressure plasma treatment to coat Ti-alloy orthodontic wire with white oxide layer. Japanese Journal of Applied Physics, 2020, 59, SAAC09.                                                                                                   | 0.8 | 3         |
| 154 | Microstructures and Mechanical Properties of Ternary Ti^ ^ndash;10Cr^ ^ndash;(V, Fe, Mo) Alloys<br>with Self-tunable Young's Moduli for Biomedical Applications. ISIJ International, 2012, 52, 1655-1660.                                                               | 0.6 | 3         |
| 155 | Effect of Solute Oxygen on Compressive Fatigue Strength of Spinal Fixation Rods Made of<br>Ti–29Nb–13Ta–4.6Zr Alloys. Materials Transactions, 2016, 57, 1993-1997.                                                                                                      | 0.4 | 3         |
| 156 | Hard-Ceramic Layer Formed on Ti-29Nb-13Ta-4.6Zr and Ti-6Al-4V ELI during Gas Nitriding. Materials<br>Science Forum, 2007, 561-565, 1509-1512.                                                                                                                           | 0.3 | 2         |
| 157 | Effects of Heat Treatment and Load on Frictional Wear Characteristics of β-Type Ti-Nb-Ta-Zr System<br>Alloy for Biomedical Applications in Air and Simulated Body Environment. Nippon Kinzoku<br>Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 407-414. | 0.2 | 2         |
| 158 | Change in Fatigue Strength of Biomedical β-Type Titanium Alloy through Heat Treatment Processes.<br>Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 893-898.                                                                                       | 0.1 | 2         |
| 159 | Mechanical Performance of Newly Developed Titanium and Zirconium System Alloys for Biomedical Applications. Materials Science Forum, 0, 638-642, 495-500.                                                                                                               | 0.3 | 2         |
| 160 | Improvement in Fatigue Strength of Biomedical β-Type<br>Ti–Nb–Ta–Zr Alloy while Maintaining Low Young's<br>Modulus through Optimizing ω-Phase Precipitation. Materials Transactions, 2011, , .                                                                          | 0.4 | 2         |
| 161 | Corrosion Resistance of Ti-29Nb-13Ta-4.6Zr Alloy in a Fluoride-Containing Solution. Key Engineering<br>Materials, 0, 529-530, 584-587.                                                                                                                                  | 0.4 | 2         |
| 162 | Difference of Microstructure and Fatigue Properties between Forged and Rolled Ti-6Al-4V. Key<br>Engineering Materials, 2012, 508, 161-165.                                                                                                                              | 0.4 | 2         |

| #   | Article                                                                                                                                                                                                                           | IF              | CITATIONS   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|
| 163 | Relationship between Microstructures and Mechanical Properties in<br>Ti–4.5Al–2Mo–1.6V–0.5Fe–0.3Si–0.03C for Next-Generation<br>Aircraft Applications. Materials Transactions, 2013, 54, 783-790.                                 | 0.4             | 2           |
| 164 | Microstructural Analysis of Biomedical Co-Cr-Mo Alloy Subjected to High-Pressure Torsion<br>Processing. Key Engineering Materials, 0, 616, 263-269.                                                                               | 0.4             | 2           |
| 165 | Biomedical Polymer Surface Modification of Beta-Type Titanium Alloy for Implants through Anodic<br>Oxide Nanostructures. Materials Science Forum, 0, 783-786, 1261-1264.                                                          | 0.3             | 2           |
| 166 | Wear Properties of Ti-6Al-4V/Ti-29Nb-13Ta-4.6Zr Combination for Spinal Implants. Advanced Materials<br>Research, 0, 922, 424-428.                                                                                                 | 0.3             | 2           |
| 167 | Precipitation of β′ phase and hardening in dental-casting Ag–20Pd–12Au–14.5Cu alloys subjected to aging treatments. Materials Science and Engineering C, 2014, 36, 329-335.                                                       | 3.8             | 2           |
| 168 | A Novel Method of Antibacterial Evaluation Based on the Inhibition of Hydrogen Sulfide Producing<br>Activities of Salmonella. Materials Transactions, 2016, 57, 995-1000.                                                         | 0.4             | 2           |
| 169 | Osteoanabolic Implants: Osteoanabolic Implant Materials for Orthopedic Treatment (Adv. Healthcare) Tj ETQq1 1                                                                                                                     | 0,784314<br>3.9 | 1 rgBT /Ove |
| 170 | Ti-Based Biomedical Alloys. , 2019, , 61-76.                                                                                                                                                                                      |                 | 2           |
| 171 | Influence of Sintering Temperature on Mechanical Properties of Ti-Nb-Zr-Fe Alloys Prepared by Spark<br>Plasma Sintering. Journal of Materials Engineering and Performance, 2021, 30, 5719-5727.                                   | 1.2             | 2           |
| 172 | Mechanically Multifunctional Properties and Microstructure of New Beta-Type Titanium Alloy,<br>Ti-29Nb-13Ta-4.6Zr, for Biomedical Applications. Advances in Materials Research, 2008, , 167-183.                                  | 0.2             | 2           |
| 173 | Relationship between Microstructure and Fatigue Properties of Forged Ti–5Al–2Sn–2Zr–4Mo–4Cr for Aircraft Applications. Materials Transactions, 2020, 61, 2017-2024.                                                               | 0.4             | 2           |
| 174 | Factors Leading to Low Elastic Modulus and Current Status of Medically Applied Research of β-type<br>Ti-Nb-based Alloys. Materia Japan, 2020, 59, 588-593.                                                                        | 0.1             | 2           |
| 175 | Effect of low modulus titanium plate fixation on rabbit femur bone healing. Journal of Materials<br>Research, 0, , .                                                                                                              | 1.2             | 2           |
| 176 | Change in Tensile and Fatigue Properties of Biomedical Ti-29Nb-13Ta-4.6Zr Alloy Fabricated by Various<br>Processings. Materials Science Forum, 2007, 561-565, 1505-1508.                                                          | 0.3             | 1           |
| 177 | Effect of Oxygen on Phase Precipitation and Mechanical Functionality in Ti-29Nb-13Ta-4.6Zr. Key<br>Engineering Materials, 2010, 436, 179-184.                                                                                     | 0.4             | 1           |
| 178 | Mechanical Properties and Frictional Wear Characteristics of Biomedical Zr-20 mass%Nb Alloy<br>Subjected to Surface Hardening Treatment. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of<br>Metals, 2011, 75, 452-459. | 0.2             | 1           |
| 179 | Young's Modulus Changeable Titanium Alloys for Orthopaedic Applications. Materials Science Forum,<br>0, 706-709, 557-560.                                                                                                         | 0.3             | 1           |
| 180 | Metallic Biomaterials, Current Situation and Future Perspective<br>>^ ^#x301C;Trend in Development<br>of Metallic Materials for Orthopedic Applications^ ^#x301C;. Materia Japan, 2012, 51, 309-312.                              | 0.1             | 1           |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Development of New Titanium-Molybdenum Alloys with Changeable Young's Modulus for Spinal<br>Fixture Devices. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 695-700.                                                   | 0.5 | 1         |
| 182 | Advances in Development of Titanium Alloys for Spinal Fixation Applications-Titanium Alloys with High<br>Fatigue Strength and Low Springback for Spinal Fixation Applications Key Engineering Materials, 0,<br>575-576, 446-452.       | 0.4 | 1         |
| 183 | Dental Materials. , 2013, , .                                                                                                                                                                                                          |     | 1         |
| 184 | Effect of Subsurface Deformation on Sliding Wear Behavior of Ti-29Nb-13Ta-4.6Zr Alloys for<br>Biomedical Applications. Key Engineering Materials, 0, 616, 270-274.                                                                     | 0.4 | 1         |
| 185 | Optimization of Mo Content in Beta-Type Ti-Mo Alloys for Obtaining Larger Changeable Young's<br>Modulus during Deformation for Use in Spinal Fixation Applications. Materials Science Forum, 0,<br>783-786, 1307-1312.                 | 0.3 | 1         |
| 186 | Evaluation of Adhesion of Hydroxyapatite Films Fabricated on Biomedical β-Type Titanium Alloy after Immersion in Ringer's Solution. Materials Transactions, 2015, 56, 1703-1710.                                                       | 0.4 | 1         |
| 187 | Dental Metallic Materials. Springer Series in Biomaterials Science and Engineering, 2015, , 251-281.                                                                                                                                   | 0.7 | 1         |
| 188 | Current Situation and Challenges and Prospects of the Design and Manufacturing Process of the Spinal Implants. Materia Japan, 2016, 55, 142-146.                                                                                       | 0.1 | 1         |
| 189 | Microstructure, Mechanical Properties, and Springback of Ti-Nb Alloys Modified by Mo Addition.<br>Journal of Materials Engineering and Performance, 2020, 29, 5366-5373.                                                               | 1.2 | 1         |
| 190 | Beta-Type Titanium Alloys for use as Rods in Spinal Fixation Devices. , 2016, , 215-221.                                                                                                                                               |     | 1         |
| 191 | Relationship between microstructures and mechanical properties of<br>Ti–4.5%Al–2%Mo–1.6%V–0.5%Fe–0.3%Si–0.03%C for next-generation aircraft applications.<br>Keikinzoku/Journal of Japan Institute of Light Metals, 2011, 61, 711-717. | 0.1 | 1         |
| 192 | Formability of Hydroxyapatite on Beta-Type Ti-Nb-Ta-Zr Alloy for Biomedical Applications through<br>Alkaline Treatment Process. Key Engineering Materials, 2007, 352, 297-300.                                                         | 0.4 | 0         |
| 193 | Mechanical Behaviors of Ti-29Nb-13Ta-4.6Zr-XO for Biomedical Applications Subjected to Cold Working and Various Heat Treatments. Materials Science Forum, 2007, 561-565, 1471-1476.                                                    | 0.3 | 0         |
| 194 | Development of allergy-free titanium alloys for brass instruments and their characteristics.<br>Keikinzoku/Journal of Japan Institute of Light Metals, 2008, 58, 604-610.                                                              | 0.1 | 0         |
| 195 | Mechanical properties of a β-type titanium alloy cast using a calcia mold for biomedical applications.<br>Keikinzoku/Journal of Japan Institute of Light Metals, 2010, 60, 177-182.                                                    | 0.1 | 0         |
| 196 | Effects of Nb and O Contents on Microstructures and Mechanical Functionalities of Biomedical<br>Ti–Nb–Ta–Zr–O System Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2010,<br>96, 93-100.                    | 0.1 | 0         |
| 197 | Effect of Cu Content on Unique Hardening Behavior of Dental Ag-Pd-Au-Cu System Alloy Subjected to<br>Solution Treatment. Materials Science Forum, 2010, 654-656, 2200-2203.                                                            | 0.3 | 0         |
| 198 | Improvement of Mechanical Performance and Biocompatibility of Spinal Implant Rod Made of Beta-Type<br>Ti-Nb-Ta-Zr Alloy. Materials Science Forum, 2010, 654-656, 2142-2145.                                                            | 0.3 | 0         |

MASAAKI NAKAI

| #   | Article                                                                                                                                                                                                                   | IF                  | CITATIONS      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| 199 | Microstructural Change of β′ Phase and Hardness Change in As-Solutionized Dental Ag-20Pd-12Au-14.5Cu<br>Alloy. Key Engineering Materials, 0, 508, 166-171.                                                                | 0.4                 | 0              |
| 200 | Microstructure and fatigue properties of double-sided friction stir welded Ti-4.5Al-2.5Cr-1.2Fe-0.1C alloy plate for aerospace applications. , 2013, , 429-434.                                                           |                     | 0              |
| 201 | Comparison of Mechanical Properties of a Biomedical β Titanium Alloy Added with Pure Rare Earth and Rare Earth Oxides. Materials Science Forum, 2013, 750, 147-151.                                                       | 0.3                 | 0              |
| 202 | Development of Changeable Young's Modulus with Good Mechanical Properties in β-Type Ti-Cr-O Alloys.<br>Key Engineering Materials, 0, 575-576, 453-460.                                                                    | 0.4                 | 0              |
| 203 | Relationship between Heterogeneous Microstructure and Fatigue Strength of Ti-Nb-Ta-Zr Alloy for<br>Biomedical Materials Subjected to Aging Treatments. Materials Science Forum, 0, 783-786, 1313-1319.                    | 0.3                 | 0              |
| 204 | Biofunctional Surface Layer and its Bonding Strength in Low Modulus β-Type Titanium Alloy for<br>Biomedical Applications. Materials Science Forum, 0, 783-786, 78-84.                                                     | 0.3                 | 0              |
| 205 | Nanostructure and Fatigue Behavior of <i>β-</i> Type Titanium Alloy Subjected to<br>High-Pressure Torsion after Aging Treatment. Advanced Materials Research, 0, 891-892, 9-14.                                           | 0.3                 | 0              |
| 206 | Beta-Type Titanium Alloys for use as Rods in Spinal Fixation Devices. , 0, , 213-221.                                                                                                                                     |                     | 0              |
| 207 | Change in Mechanical Properties of Biomechanical Ti-12Cr Subjected to Heat Treatment and Surface<br>Modification Processing. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80,<br>764-771.     | 0.2                 | 0              |
| 208 | Evaluation of Antibacterial Activity of Copper by Hydrogen Sulfide-Producing<br><i>Salmonella</i> . Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016,<br>80, 165-170.                              | 0.2                 | 0              |
| 209 | Change in Mechanical Properties of Biomechanical Ti–12Cr Subjected to Heat Treatment and Surface<br>Modification Processing. Materials Transactions, 2017, 58, 951-957.                                                   | 0.4                 | 0              |
| 210 | Low-Young's-Modulus Materials for Biomedical Applications. , 2019, , 435-457.                                                                                                                                             |                     | 0              |
| 211 | Improvement of Strength and Ductility by Combining Static Recrystallization and Unique Heat<br>Treatment in Co-20Cr-15W-10Ni Alloy for Stent Application. Materials Science Forum, 0, 1016, 1503-1509.                    | 0.3                 | 0              |
| 212 | Mechanical properties of biomedical 316L stainless steel plates with in-plane orthogonal anisotropy by aligning crystallographical orientation via additive manufacturing. Transactions of the JSME (in) Tj ETQq0 0 0 rgB | T / <b>Q</b> ∎erloc | k 100 Tf 50 22 |
| 213 | Mechanical Properties of Ti-12Cr Alloy with Self-Tunable Young's Modulus for Use in Spinal Fixation Devices. , 2013, , 1551-1556.                                                                                         |                     | 0              |
| 214 | Fatigue Characteristics and Microstructures of Laser-and Non-Laser Welded Low-Cost<br>Ti-4.5Al-2.5Cr-1.2Fe-0.1C for Use in Next Generation Aircrafts. , 2014, , 49-56.                                                    |                     | 0              |
| 215 | Endurance of Low-Modulus $\hat{I}^2$ -Type Titanium Alloys for Spinal Fixation. , 2014, , 205-212.                                                                                                                        |                     | 0              |
| 216 | Development and Performance of Low-Cost Beta-Type Ti-Based Alloys for Biomedical Applications Using Mn Additions. , 2017, , 229-245.                                                                                      |                     | 0              |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Suppression of Grain Boundary α Formation by Addition of Silicon in a Near-β Titanium Alloy. Materials<br>Transactions, 2019, 60, 1749-1754.                                                                       | 0.4 | 0         |
| 218 | Relationship between Microstructure and Fatigue Properties of Forged Ti-5Al-2Sn-2Zr-4Mo-4Cr for<br>Aircraft Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84,<br>200-207. | 0.2 | 0         |
| 219 | Recent Progress in Mechanically Biocompatible Titanium-Based Materials. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 206-212.                                                           | 0.2 | 0         |