Eduardo López-Urrutia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4936641/publications.pdf

Version: 2024-02-01

27 papers 668 citations

686830 13 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

1188 citing authors

#	Article	IF	CITATIONS
1	Negative Regulation of ULK1 by microRNA-106a in Autophagy Induced by a Triple Drug Combination in Colorectal Cancer Cells In Vitro. Genes, 2021, 12, 245.	1.0	15
2	Hyptis mociniana: phytochemical fingerprint and photochemoprotective effect against UV-B radiation-induced erythema and skin carcinogenesis. Food and Chemical Toxicology, 2021, 151, 112095.	1.8	9
3	Editorial: Repurposed Drugs Targeting Cancer Signaling Pathways: Clinical Insights to Improve Oncologic Therapies. Frontiers in Oncology, 2021, 11, 713040.	1.3	6
4	Editorial: Repurposed Drugs Targeting Cancer Signaling Pathways: Dissecting New Mechanism of Action Through In Vitro and In Vivo Analyses. Frontiers in Oncology, 2021, 11, 773429.	1.3	1
5	Non-Coding RNAs Associated With Radioresistance in Triple-Negative Breast Cancer. Frontiers in Oncology, 2021, 11, 752270.	1.3	10
6	Interplay Between Autophagy and Wnt/ \hat{l}^2 -Catenin Signaling in Cancer: Therapeutic Potential Through Drug Repositioning. Frontiers in Oncology, 2020, 10, 1037.	1.3	31
7	Crosstalk Between Long Non-coding RNAs, Micro-RNAs and mRNAs: Deciphering Molecular Mechanisms of Master Regulators in Cancer. Frontiers in Oncology, 2019, 9, 669.	1.3	184
8	A Multi-Center Study of BRCA1 and BRCA2 Germline Mutations in Mexican-Mestizo Breast Cancer Families Reveals Mutations Unreported in Latin American Population. Cancers, 2019, 11, 1246.	1.7	9
9	Cell migration and proliferation are regulated by miR-26a in colorectal cancer via the PTEN–AKT axis. Cancer Cell International, 2019, 19, 80.	1.8	38
10	BRCA mutations: is everything said?. Breast Cancer Research and Treatment, 2019, 173, 49-54.	1.1	12
11	Long Non-Coding RNAs as New Master Regulators of Resistance to Systemic Treatments in Breast Cancer. International Journal of Molecular Sciences, 2018, 19, 2711.	1.8	43
12	MiR-26a downregulates retinoblastoma in colorectal cancer. Tumor Biology, 2017, 39, 101042831769594.	0.8	23
13	Alternative splicing regulation in tumor necrosis factor‑mediated inflammation (Review). Oncology Letters, 2017, 14, 5114-5120.	0.8	10
14	Micro-RNAs as Potential Predictors of Response to Breast Cancer Systemic Therapy: Future Clinical Implications. International Journal of Molecular Sciences, 2017, 18, 1182.	1.8	39
15	Targeting Metabolic Remodeling in Triple Negative Breast Cancer in a Murine Model. Journal of Cancer, 2017, 8, 178-189.	1.2	26
16	Anti-inflammatory and Antitumor Activity of a Triple Therapy for a Colitis-Related Colorectal Cancer. Journal of Cancer, 2016, 7, 1632-1644.	1.2	18
17	MicroRNAs are involved in cervical cancer development, progression, clinical outcome and improvement treatment response (Review). Oncology Reports, 2016, 35, 3-12.	1.2	50
18	PAX8 is transcribed aberrantly in cervical tumors and derived cell lines due to complex gene rearrangements. International Journal of Oncology, 2016, 49, 371-380.	1.4	4

#	Article	lF	CITATIONS
19	Transcript Profiling Distinguishes Complete Treatment Responders With Locally Advanced Cervical Cancer. Translational Oncology, 2015, 8, 77-84.	1.7	11
20	MicroRNAs in Cervical Cancer: Evidences for a miRNA Profile Deregulated by HPV and Its Impact on Radio-Resistance. Molecules, 2014, 19, 6263-6281.	1.7	55
21	Biochemical and proteomic analysis of spliceosome factors interacting with intron-1 of human papillomavirus type-16. Journal of Proteomics, 2014, 111, 184-197.	1.2	2
22	Differential RNA- and protein-expression profiles of cactus seeds capable of hydration memory. Seed Science Research, 2014, 24, 91-99.	0.8	16
23	Clinical evidence of the relationship between aspirin and breast cancer risk (Review). Oncology Reports, 2014, 32, 451-461.	1.2	16
24	Biomarkers in Lung Cancer: Integration with Radiogenomics Data. , 2013, , .		1
25	A few nucleotide polymorphisms are sufficient to recruit nuclear factors differentially to the intron 1 of HPV-16 intratypic variants. Virus Research, 2012, 166, 43-53.	1.1	12
26	The HPV-16 E7 oncoprotein is expressed mainly from the unspliced E6/E7 transcript in cervical carcinoma C33-A cells. Archives of Virology, 2010, 155, 1959-1970.	0.9	22
27	An assessment of conservation alternatives of Laelia albida (Orchidaceae) in Zapotitlan Salinas, Puebla, through the Mexican Wild Species Extinction Risk Evaluation Method (MER): Culture and uses of the biological resource. Environmental Science and Policy, 2005, 8, 145-151.	2.4	1