Lynne S Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4936209/publications.pdf

Version: 2024-02-01

361296 345118 2,436 44 20 36 citations h-index g-index papers 49 49 49 2436 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Two Pathways for Base Excision Repair in Mammalian Cells. Journal of Biological Chemistry, 1996, 271, 9573-9578.	1.6	469
2	Tumour suppressors, kinases and clamps: How p53 regulates the cell cycle in response to DNA damage. BioEssays, 1995, 17, 501-508.	1.2	292
3	A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Current Biology, 1995, 5, 275-282.	1.8	278
4	Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair. Oncogene, 1997, 14, 2313-2321.	2.6	151
5	The role of cellular senescence in ageing of the placenta. Placenta, 2017, 52, 139-145.	0.7	116
6	Asymmetry of DNA replication fork progression in Werner's syndrome. Aging Cell, 2002, 1, 30-39.	3.0	111
7	Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2. Biogerontology, 2016, 17, 305-315.	2.0	101
8	Multiple pathways control cell growth and transformation: overlapping and independent activities of p53 and p21Cip1/WAF1/Sdi1., 1997, 183, 134-140.		99
9	Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging, 2016, 8, 231-244.	1.4	89
10	Small molecule modulation of splicing factor expression is associated with rescue from cellular senescence. BMC Cell Biology, 2017, 18, 31.	3.0	71
11	Interconnections between Inflammageing and Immunosenescence during Ageing. Cells, 2022, 11, 359.	1.8	70
12	Tackling immunosenescence to improve COVID-19 outcomes and vaccine response in older adults. The Lancet Healthy Longevity, 2020, 1 , e55-e57.	2.0	60
13	mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. International Journal of Molecular Sciences, 2018, 19, 2325.	1.8	58
14	Increasing longevity through caloric restriction or rapamycin feeding in mammals: common mechanisms for common outcomes?. Aging Cell, 2009, 8, 607-613.	3.0	52
15	Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner's syndrome, and an essential replication factor, PCNA. Mechanisms of Ageing and Development, 2003, 124, 167-174.	2.2	45
16	EDITORIAL. REGULATION OF APOPTOSIS BY Bcl-2 AND ITS RELATED PROTEINS: IMMUNOCHEMICAL CHALLENGES AND THERAPEUTIC IMPLICATIONS. , 1996, 179, 1-3.		42
17	Structural basis of the anti-ageing effects of polyphenolics: mitigation of oxidative stress. BMC Chemistry, 2020, 14, 50.	1.6	38
18	Correction of Proliferation And Drug Sensitivity Defects in The Progeroid Werner's Syndrome by Holliday Junction Resolution. Rejuvenation Research, 2007, 10, 27-40.	0.9	36

#	Article	IF	Citations
19	Animal and human models to understand ageing. Maturitas, 2016, 93, 18-27.	1.0	35
20	Identification and characterization of a <i>Drosophila</i> ortholog of WRN exonuclease that is required to maintain genome integrity. Aging Cell, 2008, 7, 418-425.	3.0	34
21	The role of DNA exonucleases in protecting genome stability and their impact on ageing. Age, 2012, 34, 1317-1340.	3.0	30
22	DmWRNexo is a 3′–5′ exonuclease: phenotypic and biochemical characterization of mutants of the Drosophila orthologue of human WRN exonuclease. Biogerontology, 2009, 10, 267-277.	2.0	23
23	Modeling Werner Syndrome in <i>Drosophila melanogaster</i> . Annals of the New York Academy of Sciences, 2007, 1119, 274-288.	1.8	18
24	Intercellular Transfer of Mitochondria between Senescent Cells through Cytoskeleton-Supported Intercellular Bridges Requires mTOR and CDC42 Signalling. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-17.	1.9	18
25	Optimisation of a screening platform for determining IL-6 inflammatory signalling in the senescence-associated secretory phenotype (SASP). Biogerontology, 2019, 20, 359-371.	2.0	16
26	Live Fast, Die Young: New Lessons in Mammalian Longevity. Rejuvenation Research, 2009, 12, 283-288.	0.9	11
27	Biomarkers, interventions and healthy ageing. New Biotechnology, 2013, 30, 373-377.	2.4	9
28	Targeting aging cells improves survival. Science, 2021, 373, 281-282.	6.0	9
29	The Drosophila orthologue of progeroid human WRN exonuclease, DmWRNexo, cleaves replication substrates but is inhibited by uracil or abasic sites. Age, 2013, 35, 793-806.	3.0	8
30	Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Frontiers in Physiology, 2022, 13, 812157.	1.3	8
31	Prospects for Rejuvenation of Aged Tissue by Telomerase Reactivation. Rejuvenation Research, 2010, 13, 749-754.	0.9	6
32	Recapitulation of Werner syndrome sensitivity to camptothecin by limited knockdown of the WRN helicase/exonuclease. Biogerontology, 2012, 13, 49-62.	2.0	4
33	A Fluorescence-based Exonuclease Assay to Characterize DmWRNexo, Orthologue of Human Progeroid WRN Exonuclease, and Its Application to Other Nucleases. Journal of Visualized Experiments, 2013, , e50722.	0.2	4
34	Linking interdisciplinary and multiscale approaches to improve healthspanâ€"a new UK model for collaborative research networks in ageing biology and clinical translation. The Lancet Healthy Longevity, 2022, 3, e318-e320.	2.0	4
35	PCNA tightens its hold on the nucleus. Cell Cycle, 2015, 14, 2727-2728.	1.3	3
36	Generation of a novel model of primary human cell senescence through Tenovin-6 mediated inhibition of sirtuins. Biogerontology, 2019, 20, 303-319.	2.0	3

#	Article	IF	CITATIONS
37	Coordination of Nucleases and Helicases during DNA Replication and Double-strand Break Repair. , 2009, , $112-155$.		3
38	Hypothesis: Causes of Type 2 Diabetes in Progeroid Werner Syndrome. Open Longevity Science, 2008, 2, 100-103.	0.8	3
39	Ring Structures and Six-fold Symmetry in DNA Replication. , 2009, , 47-85.		2
40	Cell senescence: the future of ageing?. Biogerontology, 2009, 10, 229-233.	2.0	0
41	Ageing here and now: current research and transformative therapies. Biogerontology, 2019, 20, 249-253.	2.0	O
42	The Role of WRN Helicase/Exonuclease in DNA Replication. , 0, , .		0
43	Understanding ageing: biological and social perspectives. , 2014, , 25-76.		O
44	Towards understanding the biological drivers of cell ageing. , 2018, , 131-154.		0