Edward M B Thiemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4936034/publications.pdf

Version: 2024-02-01

61 2,356 27 48
papers citations h-index g-index

63 63 63 1383
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Martian nonmigrating atmospheric tides in the thermosphere and ionosphere at solar minimum. lcarus, 2023, 393, 114767.	2.5	2
2	Solar Extreme Ultraviolet Irradiance Uncertainties for Planetary Studies. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	7
3	PROBA2 LYRA Occultations: Thermospheric Temperature and Composition, Sensitivity to EUV Forcing, and Comparisons With Mars. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029262.	2.4	2
4	On the Altitude Patterns of Photoâ€Chemicalâ€Equilibrium in the Martian Ionosphere: A Special Role for Electron Temperature. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	3
5	Ionization Efficiency in the Dayside Ionosphere of Mars: Structure and Variability. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006923.	3.6	5
6	Variations in the Ionospheric Peak Altitude at Mars in Response to Dust Storms: 13 Years of Observations From the Mars Express Radar Sounder. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006092.	3.6	19
7	GOES-R Series Solar X-ray and Ultraviolet Irradiance. , 2020, , 233-242.		5
8	The Flare Irradiance Spectral Modelâ€Version 2 (FISM2). Space Weather, 2020, 18, e2020SW002588.	3.7	50
9	Tidal Wave-Driven Variability in the Mars Ionosphere-Thermosphere System. Atmosphere, 2020, 11, 521.	2.3	14
10	Subsolar Electron Temperatures in the Lower Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027597.	2.4	6
11	Mars Upper Atmospheric Responses to the 10 September 2017 Solar Flare: A Global, Timeâ€Dependent Simulation. Geophysical Research Letters, 2019, 46, 9334-9343.	4.0	19
12	The Effects of Crustal Magnetic Fields and Solar EUV Flux on Ionopause Formation at Mars. Geophysical Research Letters, 2019, 46, 10257-10266.	4.0	14
13	Solar flares observed by Rosetta at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A49.	5.1	4
14	Low Electron Temperatures Observed at Mars by MAVEN on Dayside Crustal Magnetic Field Lines. Journal of Geophysical Research: Space Physics, 2019, 124, 7629-7637.	2.4	8
15	Multiple Scattering Effects in the Interplanetary Medium: Evaluation Using SOHO SWAN and MAVEN EUVM Lyman <i>î±</i> Measurements. Journal of Geophysical Research: Space Physics, 2019, 124, 3949-3960.	2.4	2
16	Seasonal Variability of Deuterium in the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 2152-2164.	2.4	13
17	Seasonal, Solar Zenith Angle, and Solar Flux Variations of O ⁺ in the Topside Ionosphere of Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 3125-3138.	2.4	19
18	Electron Temperature Response to Solar Forcing in the Low‣atitude Martian Ionosphere. Journal of Geophysical Research E: Planets, 2019, 124, 3082-3094.	3.6	8

#	Article	IF	CITATIONS
19	The GOES-R EUVS model for EUV irradiance variability. Journal of Space Weather and Space Climate, 2019, 9, A43.	3.3	14
20	Oneâ∈Hertz Waves at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3460-3476.	2.4	10
21	Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. Journal of Geophysical Research E: Planets, 2018, 123, 1192-1202.	3.6	38
22	First Evidence of Persistent Nighttime Temperature Structures in the Neutral Thermosphere of Mars. Geophysical Research Letters, 2018, 45, 8819-8825.	4.0	7
23	Mars H Escape Rates Derived From MAVEN/IUVS Lyman Alpha Brightness Measurements and Their Dependence on Model Assumptions. Journal of Geophysical Research E: Planets, 2018, 123, 2192-2210.	3.6	42
24	An Artificial Neural Network for Inferring Solar Wind Proxies at Mars. Geophysical Research Letters, 2018, 45, 10,855.	4.0	21
25	Mars Thermospheric Variability Revealed by MAVEN EUVM Solar Occultations: Structure at Aphelion and Perihelion and Response to EUV Forcing. Journal of Geophysical Research E: Planets, 2018, 123, 2248-2269.	3.6	26
26	Solar Ultraviolet Irradiance Observations of the Solar Flares During the Intense September 2017 Storm Period. Space Weather, 2018, 16, 1470-1487.	3.7	34
27	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
28	Flares at Earth and Mars: An Ionospheric Escape Mechanism?. Space Weather, 2018, 16, 1042-1056.	3.7	10
29	September 2017 Solar Flare Event: Rapid Heating of the Martian Neutral Upper Atmosphere From the Xâ€Class Flare as Observed by MAVEN. Geophysical Research Letters, 2018, 45, 8803-8810.	4.0	26
30	Martian Electron Temperatures in the Subsolar Region: MAVEN Observations Compared to a Oneâ€Dimensional Model. Journal of Geophysical Research: Space Physics, 2018, 123, 5960-5973.	2.4	21
31	Ionizing Electrons on the Martian Nightside: Structure and Variability. Journal of Geophysical Research: Space Physics, 2018, 123, 4349-4363.	2.4	35
32	Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares. Solar Physics, 2018, 293, 1.	2.5	9
33	Significant Space Weather Impact on the Escape of Hydrogen From Mars. Geophysical Research Letters, 2018, 45, 8844-8852.	4.0	29
34	Observations and Modeling of the Mars Lowâ€Altitude Ionospheric Response to the 10 September 2017 Xâ€Class Solar Flare. Geophysical Research Letters, 2018, 45, 7382-7390.	4.0	30
35	Martian Thermospheric Response to an X8.2 Solar Flare on 10 September 2017 as Seen by MAVEN/IUVS. Geophysical Research Letters, 2018, 45, 7312-7319.	4.0	24
36	The Mars Topside Ionosphere Response to the X8.2 Solar Flare of 10 September 2017. Geophysical Research Letters, 2018, 45, 8005-8013.	4.0	38

3

#	Article	IF	CITATIONS
37	Effects of a Solar Flare on the Martian Hot O Corona and Photochemical Escape. Geophysical Research Letters, 2018, 45, 6814-6822.	4.0	19
38	MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research: Space Physics, 2017, 122, 3689-3706.	2.4	55
39	Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. Journal of Geophysical Research: Space Physics, 2017, 122, 3815-3836.	2.4	106
40	MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 2768-2794.	2.4	78
41	The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 2017, 122, 2748-2767.	2.4	116
42	The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 2017, 122, 1296-1313.	2.4	124
43	The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence. Journal of Geophysical Research: Space Physics, 2017, 122, 10,811.	2.4	15
44	Vertical Thermospheric Density Profiles From EUV Solar Occultations Made by PROBA2 LYRA for Solar Cycle 24. Space Weather, 2017, 15, 1649-1660.	3.7	7
45	Sources of Ionospheric Variability at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 9670-9684.	2.4	40
46	Rosetta photoelectron emission and solar ultraviolet flux at comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S626-S635.	4.4	24
47	Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 11,113.	2.4	50
48	Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations. Journal of Geophysical Research: Space Physics, 2016, 121, 8859-8870.	2.4	33
49	Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data. Journal of Geophysical Research: Space Physics, 2016, 121, 7049-7066.	2.4	38
50	Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet. Proceedings of the International Astronomical Union, 2016, 12, 211-217.	0.0	0
51	The Solar Extreme Ultraviolet Monitor for MAVEN. Space Science Reviews, 2015, 195, 293-301.	8.1	174
52	Retrieval of CO ₂ and N ₂ in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9040-9049.	4.0	43
53	Study of the Martian cold oxygen corona from the O l 130.4 nm by IUVS/MAVEN. Geophysical Research Letters, 2015, 42, 9031-9039.	4.0	21
54	The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 2015, 42, 9023-9030.	4.0	95

#	Article	IF	CITATIONS
55	Threeâ€dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9001-9008.	4.0	67
56	MAVEN IUVS observation of the hot oxygen corona at Mars. Geophysical Research Letters, 2015, 42, 9009-9014.	4.0	77
57	MAVEN insights into oxygen pickup ions at Mars. Geophysical Research Letters, 2015, 42, 8870-8876.	4.0	53
58	Neutral density response to solar flares at Mars. Geophysical Research Letters, 2015, 42, 8986-8992.	4.0	33
59	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
60	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
61	Radiation Testing a Very Low-Noise RHBD ASIC Electrometer. , 2010, , .		0