Raviv Katz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4935993/publications.pdf Version: 2024-02-01

ΡΛΛΙΝ ΚΑΤΖ

#	Article	IF	CITATIONS
1	Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Progress in Retinal and Eye Research, 2021, 84, 100951.	7.3	134
2	Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy. British Journal of Ophthalmology, 2021, 105, 577-581.	2.1	71
3	Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy. Translational Vision Science and Technology, 2019, 8, 18.	1.1	55
4	Different Scan Protocols Affect the Detection Rates of Diabetic Retinopathy Lesions by Wide-Field Swept-Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2020, 215, 72-80.	1.7	34
5	Guide-substrate base-pairing requirement for box H/ACA RNA-guided RNA pseudouridylation. Rna, 2018, 24, 1106-1117.	1.6	27
6	<p>Quantitative Comparison Of Microvascular Metrics On Three Optical Coherence Tomography Angiography Devices In Chorioretinal Disease</p> . Clinical Ophthalmology, 2019, Volume 13, 2063-2069.	0.9	21
7	Contrast sensitivity function in patients with macular disease and good visual acuity. British Journal of Ophthalmology, 2022, 106, 839-844.	2.1	21
8	A quantitative comparison of four optical coherence tomography angiography devices in healthy eyes. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 1493-1501.	1.0	21
9	Detection of neovascularisation in the vitreoretinal interface slab using widefield swept-source optical coherence tomography angiography in diabetic retinopathy. British Journal of Ophthalmology, 2022, 106, 534-539.	2.1	21
10	Measuring the Contrast Sensitivity Function in Non-Neovascular and Neovascular Age-Related Macular Degeneration: The Quantitative Contrast Sensitivity Function Test. Journal of Clinical Medicine, 2021, 10, 2768.	1.0	20
11	<p>The Impact of the COVID-19 Pandemic on Ophthalmic Care at an Eye-Specific Emergency Department in an Outbreak Hotspot</p> . Clinical Ophthalmology, 2020, Volume 14, 4155-4163.	0.9	18
12	Wide-field swept-source optical coherence tomography angiography in the assessment of retinal microvasculature and choroidal thickness in patients with myopia. British Journal of Ophthalmology, 2023, 107, 102-108.	2.1	16
13	Widefield Swept-Source OCT Angiography Metrics Associated with the Development of Diabetic Vitreous Hemorrhage. Ophthalmology, 2021, 128, 1312-1324.	2.5	15
14	Nonperfusion Area and Other Vascular Metrics by Wider Field Swept-Source OCT Angiography as Biomarkers of Diabetic Retinopathy Severity. Ophthalmology Science, 2022, 2, 100144.	1.0	14
15	Measuring Contrast Sensitivity Function With Active Learning in Retinal Vein Occlusion: A New Endpoint of Visual Function. Ophthalmic Surgery Lasers and Imaging Retina, 2020, 51, 392-400.	0.4	13
16	Detection of retinal microvascular changes in von Hippel-Lindau disease using optical coherence tomography angiography. PLoS ONE, 2020, 15, e0229213.	1.1	9
17	Genomic-Metabolomic Associations Support the Role of LIPC and Glycerophospholipids in Age-Related Macular Degeneration. Ophthalmology Science, 2021, 1, 100017.	1.0	7
18	BASELINE PREDICTORS ASSOCIATED WITH 3-YEAR CHANGES IN DARK ADAPTATION IN AGE-RELATED MACULAR DEGENERATION. Retina, 2021, 41, 2098-2105.	1.0	6

ΓΑΛΙΝ ΚΑΤΖ

#	Article	IF	CITATIONS
19	Plasma Metabolomic Profiles Associated with Three-Year Progression of Age-Related Macular Degeneration. Metabolites, 2022, 12, 32.	1.3	6
20	Association of Human Plasma Metabolomics with Delayed Dark Adaptation in Age-Related Macular Degeneration. Metabolites, 2021, 11, 183.	1.3	5
21	Inter-device reliability of swept source and spectral domain optical coherence tomography and retinal layer differences in schizophrenia. Biomarkers in Neuropsychiatry, 2021, 5, 100036.	0.7	5
22	Area under the dark adaptation curve as a reliable alternate measure of dark adaptation response. British Journal of Ophthalmology, 2022, 106, 1450-1456.	2.1	4
23	Widefield Swept-Source OCTA in Vogt-Koyanagi-Harada Disease. Ophthalmic Surgery Lasers and Imaging Retina, 2020, 51, 407-412.	0.4	4
24	Retrospective Analysis of Retinal Imaging in COVID-19 Positive Patients at a Tertiary Eye Care Center. Clinical Ophthalmology, 2021, Volume 15, 3727-3731.	0.9	2
25	Remote Imaging Capture with Widefield Swept-Source OCT Angiography During the COVID-19 Pandemic. Clinical Ophthalmology, 2022, Volume 16, 477-486.	0.9	0
26	Peripapillary Choroidal Vascularity and Visual Correlates in Non-Arteritic Anterior Ischemic Optic Neuropathy Using Swept-Source Optical Coherence Tomography. Frontiers in Ophthalmology, 2022, 2, .	0.2	0