
Beate I Escher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4935435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trout and Human Plasma Protein Binding of Selected Pharmaceuticals Informs the Fish Plasma Model. Environmental Toxicology and Chemistry, 2022, 41, 559-568.	2.2	15
2	Toxicity to bronchial cells and endocrine disruptive potentials of indoor air and dust extracts and their association with multiple chemical classes. Journal of Hazardous Materials, 2022, 424, 127306.	6.5	3
3	The Ecoâ€Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. Environmental Toxicology and Chemistry, 2022, 41, 30-45.	2.2	25
4	Nitriles as main products from the oxidation of primary amines by ferrate(VI): Kinetics, mechanisms and toxicological implications for nitrogenous disinfection byproduct control. Water Research, 2022, 209, 117881.	5.3	15
5	Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays – A guide to developing a testing strategy. Environmental Research, 2022, 205, 112483.	3.7	30
6	Andrographolide Derivatives Target the KEAP1/NRF2 Axis and Possess Potent Anti‧ARS oVâ€2 Activity. ChemMedChem, 2022, 17, e202100732.	1.6	6
7	Inhibition of neurite outgrowth and enhanced effects compared to baseline toxicity in SH-SY5Y cells. Archives of Toxicology, 2022, 96, 1039-1053.	1.9	12
8	pH-Dependent Partitioning of Ionizable Organic Chemicals between the Silicone Polymer Polydimethylsiloxane (PDMS) and Water. ACS Environmental Au, 2022, 2, 253-262.	3.3	6
9	One planet: one health. A call to support the initiative on a global science–policy body on chemicals and waste. Environmental Sciences Europe, 2022, 34, 21.	2.6	39
10	Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment. Environmental Science & amp; Technology, 2022, 56, 4702-4710.	4.6	41
11	Inputs of disinfection by-products to the marine environment from various industrial activities: Comparison to natural production. Water Research, 2022, 217, 118383.	5.3	18
12	High-Throughput Assessment of the Abiotic Stability of Test Chemicals in <i>In Vitro</i> Bioassays. Chemical Research in Toxicology, 2022, 35, 867-879.	1.7	6
13	Impact of various aeration strategies on the removal of micropollutants and biological effects in aerated horizontal flow treatment wetlands. Science of the Total Environment, 2022, 828, 154423.	3.9	6
14	The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). Environmental Science & Technology, 2022, 56, 7448-7466.	4.6	29
15	The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard and risk assessment. Archives of Toxicology, 2022, 96, 2381-2386.	1.9	7
16	Di-(2-ethylhexyl) phthalate substitutes accelerate human adipogenesis through PPARÎ ³ activation and cause oxidative stress and impaired metabolic homeostasis in mature adipocytes. Environment International, 2022, 164, 107279.	4.8	19
17	Activation of the xenobiotic metabolism and oxidative stress response by mixtures of organic pollutants extracted with in-tissue passive sampling from liver, kidney, brain and blubber of marine mammals. Environment International, 2022, 165, 107337.	4.8	9
18	Storm Event–Driven Occurrence and Transport of Dissolved and Sorbed Organic Micropollutants and Associated Effects in the Ammer River, Southwestern Germany. Environmental Toxicology and Chemistry, 2021, 40, 88-99.	2.2	17

#	Article	IF	CITATIONS
19	Effectâ€Based Trigger Values for Mixtures of Chemicals in Surface Water Detected with In Vitro Bioassays. Environmental Toxicology and Chemistry, 2021, 40, 487-499.	2.2	36
20	Unravelling the chemical exposome in cohort studies: routes explored and steps to become comprehensive. Environmental Sciences Europe, 2021, 33, 17.	2.6	22
21	Evaluation of an in vitro assay to screen for the immunotoxic potential of chemicals to fish. Scientific Reports, 2021, 11, 3167.	1.6	12
22	Suspended Particulate Matter—A Source or Sink for Chemical Mixtures of Organic Micropollutants in a Small River under Baseflow Conditions?. Environmental Science & Technology, 2021, 55, 5106-5116.	4.6	24
23	Quantitative <i>In Vitro</i> -to- <i>In Vivo</i> Extrapolation: Nominal versus Freely Dissolved Concentration. Chemical Research in Toxicology, 2021, 34, 1175-1182.	1.7	8
24	Bioanalytical Tools in Water Quality Assessment. , 2021, , .		40
25	Kinetics of Equilibrium Passive Sampling of Organic Chemicals with Polymers in Diverse Mammalian Tissues. Environmental Science & Technology, 2021, 55, 9097-9108.	4.6	11
26	Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models. Toxicology in Vitro, 2021, 73, 105133.	1.1	58
27	Removal of micropollutants and biological effects by conventional and intensified constructed wetlands treating municipal wastewater. Water Research, 2021, 201, 117349.	5.3	21
28	Critical Membrane Concentration and Mass-Balance Model to Identify Baseline Cytotoxicity of Hydrophobic and Ionizable Organic Chemicals in Mammalian Cell Lines. Chemical Research in Toxicology, 2021, 34, 2100-2109.	1.7	23
29	Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Research, 2021, 201, 117262.	5.3	118
30	Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. Water Research, 2021, 202, 117415.	5.3	15
31	Comprehensive characterization of tire and road wear particles in highway tunnel road dust by use of size and density fractionation. Chemosphere, 2021, 279, 130530.	4.2	77
32	Estrogenicity of chemical mixtures revealed by a panel of bioassays. Science of the Total Environment, 2021, 785, 147284.	3.9	19
33	Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environment International, 2021, 156, 106730.	4.8	23
34	Chemical mixtures in human post-mortem tissues assessed by a combination of chemical analysis and in vitro bioassays after extraction with silicone. Environment International, 2021, 157, 106867.	4.8	11
35	Effectâ€Directed Analysis of Progestogens and Glucocorticoids at Trace Concentrations in River Water. Environmental Toxicology and Chemistry, 2020, 39, 189-199.	2.2	39
36	Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. Environmental Toxicology and Chemistry, 2020, 39, 269-286.	2.2	42

#	Article	IF	CITATIONS
37	Application of <i>in vitro </i> bioassays for water quality monitoring in three drinking water treatment plants using different treatment processes including biological treatment, nanofiltration and ozonation coupled with disinfection. Environmental Science: Water Research and Technology, 2020, 6, 2444-2453.	1.2	13
38	Evaluation of reverse osmosis drinking water treatment of riverbank filtrate using bioanalytical tools and non-target screening. Environmental Science: Water Research and Technology, 2020, 6, 103-116.	1.2	21
39	Experimental Validation of Mass Balance Models for in Vitro Cell-Based Bioassays. Environmental Science & Technology, 2020, 54, 1120-1127.	4.6	19
40	IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell, 2020, 182, 1252-1270.e34.	13.5	259
41	Exploring the Concepts of Concentration Addition and Independent Action Using a Linear Lowâ€Effect Mixture Model. Environmental Toxicology and Chemistry, 2020, 39, 2552-2559.	2.2	37
42	Resilience of Micropollutant and Biological Effect Removal in an Aerated Horizontal Flow Treatment Wetland. Water (Switzerland), 2020, 12, 3050.	1.2	13
43	Bioavailable Environmental Pollutant Patterns in Sediments from Passive Equilibrium Sampling. Environmental Science & Technology, 2020, 54, 15861-15871.	4.6	20
44	Cytotoxicity Burst? Differentiating Specific from Nonspecific Effects in Tox21 <i>in Vitro</i> Reporter Gene Assays. Environmental Health Perspectives, 2020, 128, 77007.	2.8	57
45	Optimization of a pre-metabolization procedure using rat liver S9 and cell-extracted S9 in the Ames fluctuation test. Science of the Total Environment, 2020, 749, 141468.	3.9	10
46	Mixture Risk Drivers in Freshwater Sediments and Their Bioavailability Determined Using Passive Equilibrium Sampling. Environmental Science & Technology, 2020, 54, 13197-13206.	4.6	17
47	The Combined Algae Test for the Evaluation of Mixture Toxicity in Environmental Samples. Environmental Toxicology and Chemistry, 2020, 39, 2496-2508.	2.2	14
48	Direct sample introduction GC-MS/MS for quantification of organic chemicals in mammalian tissues and blood extracted with polymers without clean-up. Analytical and Bioanalytical Chemistry, 2020, 412, 7295-7305.	1.9	10
49	Wastewater treatment efficacy evaluated with inÂvitro bioassays. Water Research X, 2020, 9, 100072.	2.8	31
50	Influence of Emission Sources and Tributaries on the Spatial and Temporal Patterns of Micropollutant Mixtures and Associated Effects in a Small River. Environmental Toxicology and Chemistry, 2020, 39, 1382-1391.	2.2	15
51	Experimental Exposure Assessment of Ionizable Organic Chemicals in <i>In Vitro</i> Cell-Based Bioassays. Chemical Research in Toxicology, 2020, 33, 1845-1854.	1.7	9
52	Assessing the Mixture Effects in <i>In Vitro</i> Bioassays of Chemicals Occurring in Small Agricultural Streams during Rain Events. Environmental Science & Technology, 2020, 54, 8280-8290.	4.6	66
53	Influence of Co-Dosed Lipids from Biota Extracts on the Availability of Chemicals in In Vitro Cell-Based Bioassays. Environmental Science & Technology, 2020, 54, 4240-4247.	4.6	8
54	Maternal paraben exposure triggers childhood overweight development. Nature Communications, 2020, 11, 561.	5.8	77

#	Article	IF	CITATIONS
55	Tracking complex mixtures of chemicals in our changing environment. Science, 2020, 367, 388-392.	6.0	390
56	Mixture effects of drinking water disinfection by-products: implications for risk assessment. Environmental Science: Water Research and Technology, 2020, 6, 2341-2351.	1.2	43
57	Bioavailability of hydrophobic organic chemicals on an in vitro metabolic transformation using rat liver S9 fraction. Toxicology in Vitro, 2020, 66, 104835.	1.1	11
58	Cellular Metabolism in High-Throughput <i>In Vitro</i> Reporter Gene Assays and Implications for the Quantitative <i>In Vitro</i> – <i>In Vivo</i> Extrapolation. Chemical Research in Toxicology, 2020, 33, 1770-1779.	1.7	14
59	Mixture Modelling and Effect-Directed Analysis for Identification of Chemicals, Mixtures and Effects of Concern. , 2020, , 87-97.		3
60	Mono(2â€ethylhexyl) phthalate (MEHP) and mono(2â€ethylâ€5â€oxohexyl) phthalate (MEOHP) but not di(2â€ethylhexyl) phthalate (DEHP) bind productively to the peroxisome proliferatorâ€activated receptor γ. Rapid Communications in Mass Spectrometry, 2019, 33, 75-85.	0.7	26
61	InÂvitro bioassays to assess drinking water quality. Current Opinion in Environmental Science and Health, 2019, 7, 1-7.	2.1	28
62	Baseline Toxicity and Volatility Cutoff in Reporter Gene Assays Used for High-Throughput Screening. Chemical Research in Toxicology, 2019, 32, 1646-1655.	1.7	62
63	Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environmental Sciences Europe, 2019, 31, .	2.6	142
64	How To Improve the Dosing of Chemicals in High-Throughput <i>in Vitro</i> Mammalian Cell Assays. Chemical Research in Toxicology, 2019, 32, 1462-1468.	1.7	16
65	Effects of Leachates from UV-Weathered Microplastic in Cell-Based Bioassays. Environmental Science & Technology, 2019, 53, 9214-9223.	4.6	91
66	Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environmental Sciences Europe, 2019, 31, .	2.6	140
67	Let us empower the WFD to prevent risks of chemical pollution in European rivers and lakes. Environmental Sciences Europe, 2019, 31, .	2.6	13
68	Quantification of freely dissolved effect concentrations in in vitro cell-based bioassays. Archives of Toxicology, 2019, 93, 2295-2305.	1.9	21
69	Combined Ion-Trapping and Mass Balance Models To Describe the pH-Dependent Uptake and Toxicity of Acidic and Basic Pharmaceuticals in Zebrafish Embryos (<i>Danio rerio</i>). Environmental Science & amp; Technology, 2019, 53, 7877-7886.	4.6	27
70	pHâ€Dependent Uptake and Sublethal Effects of Antihistamines in Zebrafish (<i>Danio rerio</i>) Embryos. Environmental Toxicology and Chemistry, 2019, 38, 1012-1022.	2.2	13
71	Mitochondrial Toxicity of Selected Micropollutants, Their Mixtures, and Surface Water Samples Measured by the Oxygen Consumption Rate in Cells. Environmental Toxicology and Chemistry, 2019, 38, 1000-1011.	2.2	12
72	Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. Environmental Health Perspectives, 2019, 127, 117006.	2.8	21

#	Article	IF	CITATIONS
73	C18-Coated Solid-Phase Microextraction Fibers for the Quantification of Partitioning of Organic Acids to Proteins, Lipids, and Cells. Chemical Research in Toxicology, 2019, 32, 168-178.	1.7	29
74	Highâ€ŧhroughput screening and environmental risk assessment: State of the science and emerging applications. Environmental Toxicology and Chemistry, 2019, 38, 12-26.	2.2	63
75	Transformation of endocrine disrupting chemicals, pharmaceutical and personal care products during drinking water disinfection. Science of the Total Environment, 2019, 657, 1480-1490.	3.9	42
76	QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test. Aquatic Toxicology, 2019, 207, 110-119.	1.9	29
77	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environmental Sciences Europe, 2019, 31, .	2.6	7
78	Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. TrAC - Trends in Analytical Chemistry, 2018, 102, 225-235.	5.8	82
79	Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. Science of the Total Environment, 2018, 628-629, 748-765.	3.9	176
80	Harvesting the promise of AOPs: An assessment and recommendations. Science of the Total Environment, 2018, 628-629, 1542-1556.	3.9	52
81	Effect-based monitoring of the Danube River using mobile passive sampling. Science of the Total Environment, 2018, 636, 1608-1619.	3.9	29
82	Mixture effects in samples of multiple contaminants – An inter-laboratory study with manifold bioassays. Environment International, 2018, 114, 95-106.	4.8	113
83	Solid-phase extraction as sample preparation of water samples for cell-based and other <i>in vitro</i> bioassays. Environmental Sciences: Processes and Impacts, 2018, 20, 493-504.	1.7	53
84	Metaâ€analysis of fish early life stage tests—Association of toxic ratios and acuteâ€to hronic ratios with modes of action. Environmental Toxicology and Chemistry, 2018, 37, 955-969.	2.2	17
85	Effect-directed analysis (EDA) of Danube River water sample receiving untreated municipal wastewater from Novi Sad, Serbia. Science of the Total Environment, 2018, 624, 1072-1081.	3.9	58
86	Bioanalytical assessment of adaptive stress responses in drinking water: A predictive tool to differentiate between micropollutants and disinfection by-products. Water Research, 2018, 132, 340-349.	5.3	37
87	Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. Water Research, 2018, 139, 10-18.	5.3	90
88	Screening and risk management solutions for steroidal estrogens in surface and wastewater. TrAC - Trends in Analytical Chemistry, 2018, 102, 343-358.	5.8	68
89	Application of cell-based bioassays to evaluate treatment efficacy of conventional and intensified treatment wetlands. Environmental Science: Water Research and Technology, 2018, 4, 206-217.	1.2	26
90	Emerging investigator series: effect-based characterization of mixtures of environmental pollutants in diverse sediments. Environmental Sciences: Processes and Impacts, 2018, 20, 1667-1679.	1.7	17

#	Article	IF	CITATIONS
91	Combining in vitro reporter gene bioassays with chemical analysis to assess changes in the water quality along the Ammer River, Southwestern Germany. Environmental Sciences Europe, 2018, 30, 20.	2.6	27
92	Towards a holistic and solution-oriented monitoring of chemical status of European water bodies: how to support the EU strategy for a non-toxic environment?. Environmental Sciences Europe, 2018, 30, 33.	2.6	76
93	Application of Experimental Polystyrene Partition Constants and Diffusion Coefficients to Predict the Sorption of Neutral Organic Chemicals to Multiwell Plates in in Vivo and in Vitro Bioassays. Environmental Science & Technology, 2018, 52, 13511-13522.	4.6	40
94	Influence of pH on the uptake and toxicity of β-blockers in embryos of zebrafish, Danio rerio. Aquatic Toxicology, 2018, 201, 129-137.	1.9	44
95	Cellular Uptake Kinetics of Neutral and Charged Chemicals in <i>in Vitro</i> Assays Measured by Fluorescence Microscopy. Chemical Research in Toxicology, 2018, 31, 646-657.	1.7	29
96	What is driving the NF-κB response in environmental water extracts?. Chemosphere, 2018, 210, 645-652.	4.2	7
97	The advantages of linear concentration–response curves for in vitro bioassays with environmental samples. Environmental Toxicology and Chemistry, 2018, 37, 2273-2280.	2.2	88
98	Reducing Uncertainty and Confronting Ignorance about the Possible Impacts of Weathering Plastic in the Marine Environment. Environmental Science and Technology Letters, 2017, 4, 85-90.	3.9	372
99	Toxic Mixtures in Time—The Sequence Makes the Poison. Environmental Science & Technology, 2017, 51, 3084-3092.	4.6	52
100	General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri. Environmental Sciences: Processes and Impacts, 2017, 19, 414-428.	1.7	55
101	Baseline toxicity and ion-trapping models to describe the pH-dependence of bacterial toxicity of pharmaceuticals. Environmental Sciences: Processes and Impacts, 2017, 19, 901-916.	1.7	23
102	Modeling Exposure in the Tox21 <i>in Vitro</i> Bioassays. Chemical Research in Toxicology, 2017, 30, 1197-1208.	1.7	103
103	Exploring the oxidative stress response mechanism triggered by environmental water samples. Environmental Sciences: Processes and Impacts, 2017, 19, 1126-1133.	1.7	10
104	From the exposome to mechanistic understanding of chemical-induced adverse effects. Environment International, 2017, 99, 97-106.	4.8	146
105	Applying mixture toxicity modelling to predict bacterial bioluminescence inhibition by non-specifically acting pharmaceuticals and specifically acting antibiotics. Chemosphere, 2017, 173, 387-394.	4.2	25
106	Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water. Water Research, 2017, 123, 734-750.	5.3	179
107	Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams. Science of the Total Environment, 2017, 576, 785-795.	3.9	131
108	Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Science of the Total Environment, 2017, 576, 720-737.	3.9	255

#	Article	IF	CITATIONS
109	Impact of untreated wastewater on a major European river evaluated with a combination of inÂvitro bioassays and chemical analysis. Environmental Pollution, 2017, 220, 1220-1230.	3.7	169
110	Point-of-use water filters can effectively remove disinfection by-products and toxicity from chlorinated and chloraminated tap water. Environmental Science: Water Research and Technology, 2016, 2, 875-883.	1.2	17
111	The 2015 Annual Meeting of SETAC German Language Branch in Zurich (7–10 September, 2015): Ecotoxicology and environmental chemistry—from research to application. Environmental Sciences Europe, 2016, 28, 20.	2.6	1
112	Solubility enhancement of dioxins and PCBs by surfactant monomers and micelles quantified with polymer depletion techniques. Chemosphere, 2016, 152, 99-106.	4.2	20
113	Sample Enrichment for Bioanalytical Assessment of Disinfected Drinking Water: Concentrating the Polar, the Volatiles, and the Unknowns. Environmental Science & Technology, 2016, 50, 6495-6505.	4.6	63
114	Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test. Chemosphere, 2016, 164, 164-173.	4.2	71
115	Pathway-Based Approaches for Environmental Monitoring and Risk Assessment. Environmental Science & Technology, 2016, 50, 10295-10296.	4.6	12
116	Including Bioconcentration Kinetics for the Prioritization and Interpretation of Regulatory Aquatic Toxicity Tests of Highly Hydrophobic Chemicals. Environmental Science & Technology, 2016, 50, 12004-12011.	4.6	16
117	Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts – Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring. Water Research, 2016, 104, 473-484.	5.3	71
118	Combining Passive Sampling with Toxicological Characterization of Complex Mixtures of Pollutants from the Aquatic Environment. Advances in Biochemical Engineering/Biotechnology, 2016, 157, 225-261.	0.6	6
119	Pathway-Based Approaches for Environmental Monitoring and Risk Assessment. Chemical Research in Toxicology, 2016, 29, 1789-1790.	1.7	9
120	Bioanalytical effect-balance model to determine the bioavailability of organic contaminants in sediments affected by black and natural carbon. Chemosphere, 2016, 156, 181-190.	4.2	13
121	Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products. Water Research, 2016, 91, 19-30.	5.3	144
122	Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays. Environmental Science & Technology, 2016, 50, 5424-5431.	4.6	44
123	Experimental Solubility Approach to Determine PDMS–Water Partition Constants and PDMS Activity Coefficients. Environmental Science & Technology, 2016, 50, 3047-3054.	4.6	21
124	New Polymer Passive Sampler for Sensitive Biomonitoring of Lipid-Rich Matrices. Environmental Science and Technology Letters, 2016, 3, 52-56.	3.9	5
125	Effect-directed analysis supporting monitoring of aquatic environments — An in-depth overview. Science of the Total Environment, 2016, 544, 1073-1118.	3.9	288
126	Chemical and bioanalytical assessment of coal seam gas associated water. Environmental Chemistry, 2015, 12, 267.	0.7	8

#	Article	IF	CITATIONS
127	Bioanalytical Approaches to Understanding Toxicological Implications of Mixtures of Persistent Organic Pollutants in Marine Wildlife. Comprehensive Analytical Chemistry, 2015, 67, 57-84.	0.7	9
128	Future water quality monitoring — Adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 2015, 512-513, 540-551.	3.9	243
129	InÂvitro bioassays to evaluate complex chemical mixtures in recycled water. Water Research, 2015, 80, 1-11.	5.3	97
130	Understanding the implications of dissolved organic carbon when assessing antagonism in vitro: An example with an estrogen receptor assay. Chemosphere, 2015, 135, 341-346.	4.2	25
131	Death Dilemma and Organism Recovery in Ecotoxicology. Environmental Science & Technology, 2015, 49, 10136-10146.	4.6	42
132	Effect-based trigger values for inÂvitro bioassays: Reading across from existing water quality guideline values. Water Research, 2015, 81, 137-148.	5.3	80
133	Bioanalytical evidence that chemicals in tattoo ink can induce adaptive stress responses. Journal of Hazardous Materials, 2015, 296, 192-200.	6.5	22
134	Adaptive Stress Response Pathways Induced by Environmental Mixtures of Bioaccumulative Chemicals in Dugongs. Environmental Science & Technology, 2015, 49, 6963-6973.	4.6	29
135	<i>In Vitro</i> Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts. Chemical Research in Toxicology, 2015, 28, 2059-2068.	1.7	64
136	Linking in Vitro Effects and Detected Organic Micropollutants in Surface Water Using Mixture-Toxicity Modeling. Environmental Science & Technology, 2015, 49, 14614-14624.	4.6	164
137	Coupling passive sampling with in vitro bioassays and chemical analysis to understand combined effects of bioaccumulative chemicals in blood of marine turtles. Chemosphere, 2015, 138, 292-299.	4.2	29
138	Behaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity. Environmental Science: Nano, 2015, 2, 86-93.	2.2	30
139	The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management. Science of the Total Environment, 2015, 503-504, 22-31.	3.9	163
140	Realistic environmental mixtures of micropollutants in surface, drinking, and recycled water: Herbicides dominate the mixture toxicity toward algae. Environmental Toxicology and Chemistry, 2014, 33, 1427-1436.	2.2	49
141	Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations. Integrated Environmental Assessment and Management, 2014, 10, 197-209.	1.6	153
142	Bioanalytical and chemical evaluation of disinfection by-products in swimming pool water. Water Research, 2014, 59, 172-184.	5.3	92
143	Mixture Effects of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) on Lung Carcinoma Cells via a Hanging Drop Air Exposure System. Chemical Research in Toxicology, 2014, 27, 952-959.	1.7	42
144	Electrochemical treatment of reverse osmosis concentrate on boron-doped electrodes in undivided and divided and divided cell configurations. Journal of Hazardous Materials, 2014, 279, 111-116.	6.5	33

#	Article	IF	CITATIONS
145	Benchmarking Organic Micropollutants in Wastewater, Recycled Water and Drinking Water with In Vitro Bioassays. Environmental Science & Technology, 2014, 48, 1940-1956.	4.6	367
146	Does co-extracted dissolved organic carbon cause artefacts in cell-based bioassays?. Chemosphere, 2014, 108, 281-288.	4.2	19
147	Which chemicals drive biological effects in wastewater and recycled water?. Water Research, 2014, 60, 289-299.	5.3	100
148	Urban stormwater harvesting and reuse: a probe into the chemical, toxicology and microbiological contaminants in water quality. Environmental Monitoring and Assessment, 2013, 185, 6645-6652.	1.3	39
149	Toxicity characterization of urban stormwater with bioanalytical tools. Water Research, 2013, 47, 5594-5606.	5.3	69
150	Bioanalytical and chemical assessment of the disinfection by-product formation potential: Role of organic matter. Water Research, 2013, 47, 5409-5421.	5.3	82
151	Characterization of acetylcholinesterase inhibition and energy allocation in Daphnia magna exposed to carbaryl. Ecotoxicology and Environmental Safety, 2013, 98, 28-35.	2.9	36
152	Liposome and protein–water partitioning of polybrominated diphenyl ethers (PBDEs). Chemosphere, 2013, 90, 505-511.	4.2	32
153	Hanging drop: An in vitro air toxic exposure model using human lung cells in 2D and 3D structures. Journal of Hazardous Materials, 2013, 261, 701-710.	6.5	31
154	Mixture effects of organic micropollutants present in water: Towards the development of effect-based water quality trigger values for baseline toxicity. Water Research, 2013, 47, 3300-3314.	5.3	138
155	Most Oxidative Stress Response In Water Samples Comes From Unknown Chemicals: The Need For Effect-Based Water Quality Trigger Values. Environmental Science & Technology, 2013, 47, 7002-7011.	4.6	177
156	Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler. Analytical and Bioanalytical Chemistry, 2013, 405, 5225-5236.	1.9	52
157	Applicability of Passive Sampling to Bioanalytical Screening of Bioaccumulative Chemicals in Marine Wildlife. Environmental Science & Technology, 2013, 47, 7982-7988.	4.6	46
158	A Tribute to René P. Schwarzenbach. Environmental Science & Technology, 2013, 47, 6725-6727.	4.6	0
159	Headspace-Free Setup of <i>in Vitro</i> Bioassays for the Evaluation of Volatile Disinfection By-Products. Chemical Research in Toxicology, 2013, 26, 1605-1614.	1.7	34
160	A review of the detection, fate and effects of engineered nanomaterials in wastewater treatment plants. Water Science and Technology, 2013, 68, 1440-1453.	1.2	33
161	Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay. Environmental Toxicology and Chemistry, 2013, 32, 1526-1534.	2.2	27
162	Understanding bioavailability and toxicity of sedimentâ€associated contaminants by combining passive sampling with in vitro bioassays in an urban river catchment. Environmental Toxicology and Chemistry, 2013, 32, 2888-2896.	2.2	40

#	Article	IF	CITATIONS
163	Assessment of Metabolic Stability Using the Rainbow Trout (<i>Oncorhynchus mykiss</i>) Liver S9 Fraction. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2012, 53, Unit 14.10.1-28.	1.1	40
164	In vitro bioassay for reactive toxicity towards proteins implemented for water quality monitoring. Journal of Environmental Monitoring, 2012, 14, 1073.	2.1	17
165	Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway. Journal of Environmental Monitoring, 2012, 14, 2877.	2.1	111
166	Bioanalytical Assessment of the Formation of Disinfection Byproducts in a Drinking Water Treatment Plant. Environmental Science & Technology, 2012, 46, 10317-10325.	4.6	112
167	Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in <i>Gammarus pulex</i> . Environmental Science & Technology, 2012, 46, 3498-3508.	4.6	84
168	Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Research, 2012, 46, 863-872.	5.3	297
169	Evaluating dissolved organic carbon–water partitioning using polyparameter linear free energy relationships: Implications for the fate of disinfection by-products. Water Research, 2012, 46, 3637-3645.	5.3	33
170	Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater. Environment International, 2012, 45, 99-111.	4.8	111
171	Mixture Toxicity Revisited from a Toxicogenomic Perspective. Environmental Science & Technology, 2012, 46, 2508-2522.	4.6	135
172	Transfer Kinetics of Polar Organic Compounds over Polyethersulfone Membranes in the Passive Samplers Pocis and Chemcatcher. Environmental Science & Technology, 2012, 46, 6759-6766.	4.6	129
173	Toxicokinetic and toxicodynamic model for diazinon toxicity—mechanistic explanation of differences in the sensitivity of <i>Daphnia magna</i> and <i>Gammarus pulex</i> . Environmental Toxicology and Chemistry, 2012, 31, 2014-2022.	2.2	22
174	Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes. Environmental Pollution, 2012, 161, 30-35.	3.7	42
175	Recovery of a freshwater wetland from chemical contamination after an oil spill. Journal of Environmental Monitoring, 2011, 13, 713.	2.1	12
176	Environmental Risk Assessment of Fluctuating Diazinon Concentrations in an Urban and Agricultural Catchment Using Toxicokinetic–Toxicodynamic Modeling. Environmental Science & Technology, 2011, 45, 9783-9792.	4.6	30
177	Evaluation of Contaminant Removal of Reverse Osmosis and Advanced Oxidation in Full-Scale Operation by Combining Passive Sampling with Chemical Analysis and Bioanalytical Tools. Environmental Science & Technology, 2011, 45, 5387-5394.	4.6	63
178	Protein and Lipid Binding Parameters in Rainbow Trout (<i>Oncorhynchus mykiss</i>) Blood and Liver Fractions to Extrapolate from an <i>in Vitro</i> Metabolic Degradation Assay to <i>in Vivo</i> Bioaccumulation Potential of Hydrophobic Organic Chemicals. Chemical Research in Toxicology, 2011, 24, 1134-1143.	1.7	71
179	Mechanistic Toxicodynamic Model for Receptor-Mediated Toxicity of Diazoxon, the Active Metabolite of Diazoxon, in <i>Daphnia magna</i> . Environmental Science & amp; Technology, 2011, 45, 4980-4987.	4.6	21
180	Toxicokinetic Model Describing Bioconcentration and Biotransformation of Diazinon in Daphnia magna. Environmental Science & amp; Technology, 2011, 45, 4995-5002.	4.6	35

#	Article	IF	CITATIONS
181	Capacities of Membrane Lipids to Accumulate Neutral Organic Chemicals. Environmental Science & Technology, 2011, 45, 5912-5921.	4.6	241
182	Recent Advances in Environmental Risk Assessment of Transformation Products. Environmental Science & Technology, 2011, 45, 3835-3847.	4.6	355
183	The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model. Aquatic Toxicology, 2011, 101, 266-275.	1.9	91
184	Evolution of algal toxicity during (photo)oxidative degradation of diuron. Aquatic Toxicology, 2011, 101, 466-473.	1.9	44
185	Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action. Aquatic Toxicology, 2011, 103, 38-45.	1.9	59
186	Macrocyclic fragrance materials—A screening-level environmental assessment using chemical categorization. Ecotoxicology and Environmental Safety, 2011, 74, 1619-1629.	2.9	11
187	Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Research, 2011, 45, 75-92.	5.3	407
188	A screening level fate model of organic contaminants from advanced water treatment in a potable water supply reservoir. Water Research, 2011, 45, 768-780.	5.3	50
189	Electrochemical degradation of the β-blocker metoprolol by Ti/Ru0.7Ir0.3O2 and Ti/SnO2-Sb electrodes. Water Research, 2011, 45, 3205-3214.	5.3	72
190	Bioanalytical tools for the evaluation of organic micropollutants during sewage treatment, water recycling and drinking water generation. Water Research, 2011, 45, 4238-4247.	5.3	94
191	Natural versus wastewater derived dissolved organic carbon: Implications for the environmental fate of organic micropollutants. Water Research, 2011, 45, 4227-4237.	5.3	53
192	Development and calibration of a passive sampler for N-nitrosodimethylamine (NDMA) in water. Chemosphere, 2011, 84, 497-503.	4.2	12
193	Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals. Integrated Environmental Assessment and Management, 2011, 7, 28-49.	1.6	121
194	Tissue residue approach for chemical mixtures. Integrated Environmental Assessment and Management, 2011, 7, 99-115.	1.6	28
195	The tissue residue approach for toxicity assessment: Findings and critical reviews from a Society of Environmental Toxicology and Chemistry Pellston Workshop. Integrated Environmental Assessment and Management, 2011, 7, 2-6.	1.6	47
196	Bioanalytical Tools in Water Quality Assessment. Water Intelligence Online, 2011, 10, 9781780400778.	0.3	5
197	Targeting the environmental risk assessment of pharmaceuticals: Facts and fantasies. Integrated Environmental Assessment and Management, 2010, 6, 603-613.	1.6	20
198	Bioaccumulation kinetics of organic xenobiotic pollutants in the freshwater invertebrate <i>Gammarus pulex</i> modeled with prediction intervals. Environmental Toxicology and Chemistry, 2010, 29, 1625-1636.	2.2	82

#	Article	IF	CITATIONS
199	Linking toxicity in algal and bacterial assays with chemical analysis in passive samplers deployed in 21 treated sewage effluents. Environmental Toxicology and Chemistry, 2010, 29, 2575-2582.	2.2	39
200	Environmental risk assessment for the serotonin reâ€uptake inhibitor fluoxetine: Case study using the European risk assessment framework. Integrated Environmental Assessment and Management, 2010, 6, 524-539.	1.6	73
201	Advantages of toxicokinetic and toxicodynamic modelling in aquatic ecotoxicology and risk assessment. Journal of Environmental Monitoring, 2010, 12, 2056.	2.1	165
202	Development of a Partition-Controlled Dosing System for Cell Assays. Chemical Research in Toxicology, 2010, 23, 1806-1814.	1.7	72
203	Mixture toxicity of the antiviral drug Tamiflu® (oseltamivir ethylester) and its active metabolite oseltamivir acid. Aquatic Toxicology, 2010, 96, 194-202.	1.9	25
204	QSAR-analysis and mixture toxicity as diagnostic tools: Influence of degradation on the toxicity and mode of action of diuron in algae and daphnids. Aquatic Toxicology, 2010, 97, 58-67.	1.9	45
205	Toxicokinetic and Toxicodynamic Modeling Explains Carry-over Toxicity from Exposure to Diazinon by Slow Organism Recovery. Environmental Science & Technology, 2010, 44, 3963-3971.	4.6	96
206	Bioaccumulation Assessment Using Predictive Approaches. Integrated Environmental Assessment and Management, 2009, 5, 577-597.	1.6	16
207	pH dependence of steroid hormone—organic matter interactions at environmental concentrations. Science of the Total Environment, 2009, 407, 1164-1173.	3.9	75
208	Physiological Modes of Action of Fluoxetine and its Human Metabolites in Algae. Environmental Science & Technology, 2009, 43, 6830-6837.	4.6	61
209	Development of a dynamic delivery method for in vitro bioassays. Chemosphere, 2009, 76, 83-90.	4.2	54
210	Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides – evaluation of three Chemcatcher™ configurations. Water Research, 2009, 43, 903-914.	5.3	110
211	Milestone 100th issue sees evolution of JEM scope. Journal of Environmental Monitoring, 2009, 11, 1727.	2.1	1
212	Foreword: : JEM Spotlight: Recent advances in analysis of pharmaceuticals in the aquatic environment. Journal of Environmental Monitoring, 2009, 11, 921.	2.1	0
213	JEM Spotlight: Monitoring the treatment efficiency of a full scale ozonation on a sewage treatment plant with a mode-of-action based test battery. Journal of Environmental Monitoring, 2009, 11, 1836.	2.1	78
214	Bioaccumulation Assessment Using Predictive Approaches. Integrated Environmental Assessment and Management, 2009, 5, 577.	1.6	65
215	EFFECT OF PULSE HERBICIDAL EXPOSURE ON SCENEDESMUS VACUOLATUS: A COMPARISON OF TWO PHOTOSYSTEM II INHIBITORS. Environmental Toxicology and Chemistry, 2008, 27, 1399.	2.2	67
216	Membrane–Water partitioning, membrane permeability, and baseline toxicity of the parasiticides ivermectin, albendazole, and morantel. Environmental Toxicology and Chemistry, 2008, 27, 909-918.	2.2	46

#	Article	IF	CITATIONS
217	Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Science of the Total Environment, 2008, 401, 51-59.	3.9	83
218	10th Anniversary Critical Review: The tissue-residue approach for toxicity assessment: concepts, issues, application, and recommendations. Journal of Environmental Monitoring, 2008, 10, 1486.	2.1	60
219	QSAR analysis and specific endpoints for classifying the physiological modes of action of biocides in synchronous green algae. Aquatic Toxicology, 2008, 90, 8-18.	1.9	23
220	Mixture Toxicity of Three Photosystem II Inhibitors (Atrazine, Isoproturon, and Diuron) Toward Photosynthesis of Freshwater Phytoplankton Studied in Outdoor Mesocosms. Environmental Science & Technology, 2008, 42, 6424-6430.	4.6	78
221	A new hazard index of complex mixtures integrates bioconcentration and toxicity to refine the environmental risk assessment of effluents. Environment International, 2008, 34, 773-781.	4.8	12
222	Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples. Journal of Environmental Monitoring, 2008, 10, 612.	2.1	136
223	The role of hydrodynamics, matrix and sampling duration in passive sampling of polar compounds with Emporeâ,,¢ SDB-RPS disks. Journal of Environmental Monitoring, 2008, 10, 119-128.	2.1	58
224	Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery. Journal of Environmental Monitoring, 2008, 10, 622.	2.1	68
225	A Modified Parallel Artificial Membrane Permeability Assay for Evaluating the Bioconcentration of Highly Hydrophobic Chemicals in Fish. Environmental Science & Technology, 2008, 42, 1787-1793.	4.6	25
226	Quantification of Solute–Solute Interactions Using Negligible-Depletion Solid-Phase Microextraction: Measuring the Affinity of Estradiol to Bulk Organic Matter. Environmental Science & Technology, 2008, 42, 2886-2892.	4.6	43
227	Toward a Class-Independent Quantitative Structureâ^'Activity Relationship Model for Uncouplers of Oxidative Phosphorylation. Chemical Research in Toxicology, 2008, 21, 911-927.	1.7	63
228	Efficient Removal of Estrogenic Activity during Oxidative Treatment of Waters Containing Steroid Estrogens. Environmental Science & Technology, 2008, 42, 6333-6339.	4.6	136
229	Predicting the Ecotoxicological Effects of Transformation Products. Handbook of Environmental Chemistry, 2008, , 205-244.	0.2	7
230	Estrogens in Swiss Rivers and Effluents – Sampling Matters. Chimia, 2008, 62, 389-394.	0.3	15
231	Dynamic Permeation Method To Determine Partition Coefficients of Highly Hydrophobic Chemicals between Poly(dimethylsiloxane) and Water. Analytical Chemistry, 2007, 79, 6816-6822.	3.2	79
232	Screening Method for Ecotoxicological Hazard Assessment of 42 Pharmaceuticals Considering Human Metabolism and Excretory Routes. Environmental Science & Technology, 2007, 41, 4471-4478.	4.6	282
233	Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosensors and Bioelectronics, 2007, 22, 2554-2563.	5.3	146
234	Organic Pollutant Removal versus Toxicity Reduction in Industrial Wastewater Treatment:Â The Example of Wastewater from Fluorescent Whitening Agent Production. Environmental Science & Technology, 2006, 40, 3395-3401.	4.6	63

#	Article	IF	CITATIONS
235	Comparative Ecotoxicological Hazard Assessment of Beta-Blockers and Their Human Metabolites Using a Mode-of-Action-Based Test Battery and a QSAR Approach. Environmental Science & Technology, 2006, 40, 7402-7408.	4.6	166
236	The Challenge of Micropollutants in Aquatic Systems. Science, 2006, 313, 1072-1077.	6.0	2,873
237	Monitoring the Removal Efficiency of Pharmaceuticals and Hormones in Different Treatment Processes of Source-Separated Urine with Bioassays. Environmental Science & Technology, 2006, 40, 5095-5101.	4.6	88
238	Passive sampling of herbicides combined with effect analysis in algae using a novel high-throughput phytotoxicity assay (Maxi-Imaging-PAM). Journal of Environmental Monitoring, 2006, 8, 456.	2.1	57
239	The Evaluation of Liposome-Water Partitioning of 8-Hydroxyquinolines and Their Copper Complexes. Environmental Science & Technology, 2006, 40, 1784-1791.	4.6	42
240	Including Mixtures in the Determination of Water Quality Criteria for Herbicides in Surface Water. Environmental Science & Technology, 2006, 40, 426-435.	4.6	115
241	Developing Methods to Predict Chemical Fate and Effect Endpoints for Use Within REACH. Chimia, 2006, 60, 683-690.	0.3	21
242	Environmental Chemistry and Ecotoxicology – Walking a Tightrope Between Science and Practice Umweltchemie und Ökotoxikologie im Spannungsfeld von Wissenschaft und Praxis. Gaia, 2006, 15, 121-126.	0.3	5
243	The EU-project ERAPharm - Incentives for the further development of guidance documents? (4 pages). Environmental Science and Pollution Research, 2005, 12, 62-65.	2.7	27
244	SCREENING TEST BATTERY FOR PHARMACEUTICALS IN URINE AND WASTEWATER. Environmental Toxicology and Chemistry, 2005, 24, 750.	2.2	49
245	Mixture Toxicity of Reactive Chemicals by Using Two Bacterial Growth Assays as Indicators of Protein and DNA Damage. Environmental Science & amp; Technology, 2005, 39, 8753-8761.	4.6	22
246	In Vitro Assessment of Modes of Toxic Action of Pharmaceuticals in Aquatic Life. Environmental Science & Technology, 2005, 39, 3090-3100.	4.6	145
247	A Quantitative Structureâ^'Activity Relationship Model for the Intrinsic Activity of Uncouplers of Oxidative Phosphorylation. Chemical Research in Toxicology, 2005, 18, 1858-1867.	1.7	18
248	COMPARATIVE ANALYSIS OF ESTROGENIC ACTIVITY IN SEWAGE TREATMENT PLANT EFFLUENTS INVOLVING THREE IN VITRO ASSAYS AND CHEMICAL ANALYSIS OF STEROIDS. Environmental Toxicology and Chemistry, 2004, 23, 857.	2.2	149
249	MECHANISTIC APPROACHES FOR EVALUATING THE TOXICITY OF REACTIVE ORGANOCHLORINES AND EPOXIDES IN GREEN ALGAE. Environmental Toxicology and Chemistry, 2004, 23, 697.	2.2	24
250	Chemical Speciation of Organics and of Metals at Biological Interphases. , 2004, , 205-269.		13
251	Peer Reviewed: Challenges in Ecotoxicology. Environmental Science & Technology, 2004, 38, 58A-64A.	4.6	164
252	Toxic Ratio as an Indicator of the Intrinsic Toxicity in the Assessment of Persistent, Bioaccumulative, and Toxic Chemicals. Environmental Science & Technology, 2004, 38, 3659-3666.	4.6	86

#	Article	IF	CITATIONS
253	Peer Reviewed: Internal Exposure: Linking Bioavailability to Effects. Environmental Science & Technology, 2004, 38, 455A-462A.	4.6	232
254	Evidence for heterodimers of 2,4,5-trichlorophenol on planar lipid layers. A FTIR-ATR investigation. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1664, 88-99.	1.4	10
255	Evaluation of Bioanalytical Assays for Toxicity Assessment and Mode of Toxic Action Classification of Reactive Chemicals. Environmental Science & Technology, 2003, 37, 4962-4970.	4.6	33
256	Applicability and Limitation of QSARs for the Toxicity of Electrophilic Chemicals. Environmental Science & amp; Technology, 2003, 37, 4955-4961.	4.6	32
257	Baseline Toxicity (Narcosis) of Organic Chemicals Determined by In Vitro Membrane Potential Measurements in Energy-Transducing Membranes. Environmental Science & Technology, 2002, 36, 1971-1979.	4.6	112
258	Determination of liposome/water partition coefficients of organic acids and bases by solid-phase microextraction. Analyst, The, 2002, 127, 42-48.	1.7	39
259	Acute toxicity of triorganotin compounds: Different specific effects on the energy metabolism and role of pH. Environmental Toxicology and Chemistry, 2002, 21, 1191-1197.	2.2	26
260	Probabilistic approaches in the effect assessment of toxic chemicals. Environmental Science and Pollution Research, 2002, 9, 307-314.	2.7	17
261	Modes of Action in Ecotoxicology:Â Their Role in Body Burdens, Species Sensitivity, QSARs, and Mixture Effects. Environmental Science & Technology, 2002, 36, 4201-4217.	4.6	445
262	Title is missing!. , 2002, 64, 20-35.		123
262 263	Title is missing!. , 2002, 64, 20-35. pH Dependence of the Partitioning of Triphenyltin and Tributyltin between Phosphatidylcholine Liposomes and Water. Environmental Science & amp; Technology, 2001, 35, 3899-3904.	4.6	123 37
	pH Dependence of the Partitioning of Triphenyltin and Tributyltin between Phosphatidylcholine	4.6 4.6	
263	pH Dependence of the Partitioning of Triphenyltin and Tributyltin between Phosphatidylcholine Liposomes and Water. Environmental Science & amp; Technology, 2001, 35, 3899-3904. Interaction of Phenolic Uncouplers in Binary Mixtures:Â Concentration-Additive and Synergistic		37
263 264	pH Dependence of the Partitioning of Triphenyltin and Tributyltin between Phosphatidylcholine Liposomes and Water. Environmental Science & amp; Technology, 2001, 35, 3899-3904. Interaction of Phenolic Uncouplers in Binary Mixtures:Â Concentration-Additive and Synergistic Effects. Environmental Science & amp; Technology, 2001, 35, 3905-3914. Acute toxicity of (chloroâ€)catechols and (chloroâ€)catecholâ€copper combinations in <i>Escherichia coli</i> /i> corresponds to their membrane toxicity in vitro. Environmental Toxicology and Chemistry,	4.6	37 31
263 264 265	 pH Dependence of the Partitioning of Triphenyltin and Tributyltin between Phosphatidylcholine Liposomes and Water. Environmental Science & amp; Technology, 2001, 35, 3899-3904. Interaction of Phenolic Uncouplers in Binary Mixtures:Â Concentration-Additive and Synergistic Effects. Environmental Science & amp; Technology, 2001, 35, 3905-3914. Acute toxicity of (chloroâ€)catechols and (chloroâ€)catecholâ€copper combinations in <i>Escherichia coli</i>colicorresponds to their membrane toxicity in vitro. Environmental Toxicology and Chemistry, 2001, 20, 239-247. Evaluation of Liposomeâ[^]Water Partitioning of Organic Acids and Bases. 2. Comparison of Experimental 	4.6 2.2	37 31 53
263 264 265 266	 pH Dependence of the Partitioning of Triphenyltin and Tributyltin between Phosphatidylcholine Liposomes and Water. Environmental Science & amp; Technology, 2001, 35, 3899-3904. Interaction of Phenolic Uncouplers in Binary Mixtures:Â Concentration-Additive and Synergistic Effects. Environmental Science & amp; Technology, 2001, 35, 3905-3914. Acute toxicity of (chloroâ€)catechols and (chloroâ€)catecholâ€copper combinations in <i>Escherichia coli</i>colicorresponds to their membrane toxicity in vitro. Environmental Toxicology and Chemistry, 2001, 20, 239-247. Evaluation of Liposomeâ^{-^}Water Partitioning of Organic Acids and Bases. 2. Comparison of Experimental Determination Methods. Environmental Science & amp; Technology, 2000, 34, 3962-3968. Evaluation of Liposomeâ^{-^}Water Partitioning of Organic Acids and Bases. 1. Development of a Sorption 	4.6 2.2 4.6	37 31 53 75
263 264 265 266 267	 pH Dependence of the Partitioning of Triphenyltin and Tributyltin between Phosphatidylcholine Liposomes and Water. Environmental Science & amp; Technology, 2001, 35, 3899-3904. Interaction of Phenolic Uncouplers in Binary Mixtures:Â Concentration-Additive and Synergistic Effects. Environmental Science & amp; Technology, 2001, 35, 3905-3914. Acute toxicity of (chloroâ€)catechols and (chloroâ€)catecholâ€copper combinations in <i>Escherichia coli<i>i</i>/i> corresponds to their membrane toxicity in vitro. Environmental Toxicology and Chemistry, 2001, 20, 239-247.</i> Evaluation of Liposomeâ[^]Water Partitioning of Organic Acids and Bases. 2. Comparison of Experimental Determination Methods. Environmental Science & amp; Technology, 2000, 34, 3962-3968. Evaluation of Liposomeâ[^]Water Partitioning of Organic Acids and Bases. 1. Development of a Sorption Model. Environmental Science & amp; Technology, 2000, 34, 3954-3961. Liposomeâ€[°]water and octanolâ€[°]water partitioning of alcohol ethoxylates. Environmental Toxicology 	4.6 2.2 4.6 4.6	37 31 53 75 111

#	Article	IF	CITATIONS
271	A new method for simultaneous quantification of uncoupling and inhibitory activity of organic pollutants in energyâ€ŧransducing membranes. Environmental Toxicology and Chemistry, 1997, 16, 405-414.	2.2	47
272	Uptake, Speciation, and Uncoupling Activity of Substituted Phenols in Energy Transducing Membranes. Environmental Science & Technology, 1996, 30, 3071-3079.	4.6	120
273	Partitioning of Substituted Phenols in Liposomeâ^'Water, Biomembraneâ^'Water, and Octanolâ^'Water Systems. Environmental Science & Technology, 1996, 30, 260-270.	4.6	210
274	Neue Erkenntnisse über Glycosphingolipide. Lipid - Fett, 1992, 94, 534-541.	0.6	0
275	Bioanalytical Tools in Water Quality Assessment. Water Intelligence Online, 0, 10, .	0.3	11