Toshiyuki Matsunaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4935362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of cisplatin resistance in breast cancer MCF7 cells by up-regulating aldo-keto reductase 1C3 expression, glutathione synthesis and proteasomal proteolysis. Journal of Biochemistry, 2022, 171, 97-108.	0.9	4
2	Apoptotic mechanism in human brain microvascular endothelial cells triggered by 4′-iodo-α-pyrrolidinononanophenone: Contribution of decrease in antioxidant properties. Toxicology Letters, 2022, 355, 127-140.	0.4	3
3	Discovery and Structure-Based Optimization of Novel Atg4B Inhibitors for the Treatment of Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2022, 65, 4878-4892.	2.9	4
4	Porcine aldo-keto reductase 1C subfamily members AKR1C1 and AKR1C4: Substrate specificity, inhibitor sensitivity and activators. Journal of Steroid Biochemistry and Molecular Biology, 2022, 221, 106113.	1.2	2
5	Increase in Anticancer Drug-Induced Toxicity by Fisetin in Lung Adenocarcinoma A549 Spheroid Cells Mediated by the Reduction of Claudin-2 Expression. International Journal of Molecular Sciences, 2022, 23, 7536.	1.8	2
6	4′-lodo-α-Pyrrolidinononanophenone Provokes Differentiated SH-SY5Y Cell Apoptosis Through Downregulating Nitric Oxide Production and Bcl-2 Expression. Neurotoxicity Research, 2022, 40, 1322-1336.	1.3	1
7	4′-Fluoropyrrolidinononanophenone elicits neuronal cell apoptosis through elevating production of reactive oxygen and nitrogen species. Forensic Toxicology, 2021, 39, 123-133.	1.4	5
8	Targeting Nrf2-antioxidant signalling reverses acquired cabazitaxel resistance in prostate cancer cells. Journal of Biochemistry, 2021, 170, 89-96.	0.9	14
9	Characterization of aldo-keto reductase 1C subfamily members encoded in two rat genes (akr1c19 and) Tj ETQq1 Biophysics, 2021, 700, 108755.	1 0.78431 1.4	l4 rgBT /O∨ 1
10	The Role of AKR1B10 in Physiology and Pathophysiology. Metabolites, 2021, 11, 332.	1.3	35
11	Protective Effect of Aldo–keto Reductase 1B1 Against Neuronal Cell Damage Elicited by 4′-Fluoro-α-pyrrolidinononanophenone. Neurotoxicity Research, 2021, 39, 1360-1371.	1.3	2
12	Upregulation of Chemoresistance by Mg2+ Deficiency through Elevation of ATP Binding Cassette Subfamily B Member 1 Expression in Human Lung Adenocarcinoma A549 Cells. Cells, 2021, 10, 1179.	1.8	3
13	Elevation of Chemosensitivity of Lung Adenocarcinoma A549 Spheroid Cells by Claudin-2 Knockdown through Activation of Glucose Transport and Inhibition of Nrf2 Signal. International Journal of Molecular Sciences, 2021, 22, 6582.	1.8	9
14	Reactive Oxygen Species Downregulate Transient Receptor Potential Melastatin 6 Expression Mediated by the Elevation of miR-24-3p in Renal Tubular Epithelial Cells. Cells, 2021, 10, 1893.	1.8	6
15	Protective Effects of Ethanol Extract of Brazilian Green Propolis and Apigenin against Weak Ultraviolet Ray-B-Induced Barrier Dysfunction via Suppressing Nitric Oxide Production and Mislocalization of Claudin-1 in HaCaT Cells. International Journal of Molecular Sciences, 2021, 22, 10326.	1.8	6
16	9,10-Phenanthrenequinone provokes dysfunction of brain endothelial barrier through down-regulating expression of claudin-5. Toxicology, 2021, 461, 152896.	2.0	6
17	Loxoprofen enhances intestinal barrier function via generation of its active metabolite by carbonyl reductase 1 in differentiated Caco-2Âcells. Chemico-Biological Interactions, 2021, 348, 109634.	1.7	4
18	Down-Regulation of Claudin-2 Expression by Cyanidin-3-Glucoside Enhances Sensitivity to Anticancer Drugs in the Spheroid of Human Lung Adenocarcinoma A549 Cells. International Journal of Molecular Sciences, 2021, 22, 499.	1.8	14

#	Article	IF	CITATIONS
19	Inverse regulation of claudin-2 and -7 expression by p53 and hepatocyte nuclear factor 4α in colonic MCE301 cells. Tissue Barriers, 2021, 9, 1860409.	1.6	1
20	Human dehydrogenase/reductase SDR family member 11 (DHRS11) and aldo-keto reductase 1C isoforms in comparison: Substrate and reaction specificity in the reduction of 11-keto-C19-steroids. Journal of Steroid Biochemistry and Molecular Biology, 2020, 199, 105586.	1.2	13
21	Claudin-2 binding peptides, VPDSM and DSMKF, down-regulate claudin-2 expression and anticancer resistance in human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118642.	1.9	12
22	Significance of aldo-keto reductase 1C3 and ATP-binding cassette transporter B1 in gain of irinotecan resistance in colon cancer cells. Chemico-Biological Interactions, 2020, 332, 109295.	1.7	13
23	Development of Novel AKR1C3 Inhibitors as New Potential Treatment for Castration-Resistant Prostate Cancer. Journal of Medicinal Chemistry, 2020, 63, 10396-10411.	2.9	32
24	Increase in Toxicity of Anticancer Drugs by PMTPV, a Claudin-1-Binding Peptide, Mediated via Down-Regulation of Claudin-1 in Human Lung Adenocarcinoma A549 Cells. International Journal of Molecular Sciences, 2020, 21, 5909.	1.8	6
25	Kaempferide Enhances Chemosensitivity of Human Lung Adenocarcinoma A549 Cells Mediated by the Decrease in Phosphorylation of Akt and Claudin-2 Expression. Nutrients, 2020, 12, 1190.	1.7	17
26	Weak Ultraviolet B Enhances the Mislocalization of Claudin-1 Mediated by Nitric Oxide and Peroxynitrite Production in Human Keratinocyte-Derived HaCaT Cells. International Journal of Molecular Sciences, 2020, 21, 7138.	1.8	9
27	Brazilian Green Propolis Rescues Oxidative Stress-Induced Mislocalization of Claudin-1 in Human Keratinocyte-Derived HaCaT Cells. International Journal of Molecular Sciences, 2019, 20, 3869.	1.8	16
28	Rescue of tight junctional localization of a claudin-16 mutant D97S by antimalarial medicine primaquine in Madin-Darby canine kidney cells. Scientific Reports, 2019, 9, 9647.	1.6	5
29	Mouse Akr1cl gene product is a prostaglandin D2 11-ketoreductase with strict substrate specificity. Archives of Biochemistry and Biophysics, 2019, 674, 108096.	1.4	2
30	Pathophysiological roles of autophagy and aldo-keto reductases in development of doxorubicin resistance in gastrointestinal cancer cells. Chemico-Biological Interactions, 2019, 314, 108839.	1.7	16
31	Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Scientific Reports, 2019, 9, 13753.	1.6	24
32	Rabbit dehydrogenase/reductase SDR family member 11 (DHRS11): Its identity with acetohexamide reductase with broad substrate specificity and inhibitor sensitivity, different from human DHRS11. Chemico-Biological Interactions, 2019, 305, 12-20.	1.7	6
33	ZO-2 Suppresses Cell Migration Mediated by a Reduction in Matrix Metalloproteinase 2 in Claudin-18-Expressing Lung Adenocarcinoma A549 Cells. Biological and Pharmaceutical Bulletin, 2019, 42, 247-254.	0.6	7
34	Flavonol glycosides of Rosa multiflora regulates intestinal barrier function through inhibiting claudin expression in differentiated Caco-2 cells. Nutrition Research, 2019, 72, 92-104.	1.3	11
35	Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anti-Cancer Drugs, 2019, 30, 251-259.	0.7	21
36	Upregulation of transient receptor potential melastatin 6 channel expression by rosiglitazone and allâ€ŧransâ€retinoic acid in erlotinibâ€ŧreated renal tubular epithelial cells. Journal of Cellular Physiology, 2019, 234, 8951-8962.	2.0	4

#	Article	IF	CITATIONS
37	Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells. Journal of Nutritional Biochemistry, 2018, 56, 205-214.	1.9	19
38	Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 769-780.	1.9	23
39	Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis. Biochemical and Biophysical Research Communications, 2018, 497, 437-443.	1.0	37
40	Elevation of sensitivity to anticancer agents of human lung adenocarcinoma A549 cells by knockdown of claudin-2 expression in monolayer and spheroid culture models. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 470-479.	1.9	20
41	Facilitation of 9,10-phenanthrenequinone-elicited neuroblastoma cell apoptosis by NAD(P)H:quinone oxidoreductase 1. Chemico-Biological Interactions, 2018, 279, 10-20.	1.7	8
42	Sodium Citrate Increases Expression and Flux of Mg2+ Transport Carriers Mediated by Activation of MEK/ERK/c-Fos Pathway in Renal Tubular Epithelial Cells. Nutrients, 2018, 10, 1345.	1.7	8
43	Increase in resistance to anticancer drugs involves occludin in spheroid culture model of lung adenocarcinoma A549 cells. Scientific Reports, 2018, 8, 15157.	1.6	13
44	Sibutramine facilitates apoptosis and contraction of aortic smooth muscle cells through elevating production of reactive oxygen species. European Journal of Pharmacology, 2018, 841, 113-121.	1.7	10
45	Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. Journal of Biological Chemistry, 2017, 292, 2411-2421.	1.6	36
46	Structure-activity relationship for toxicity of α-pyrrolidinophenones in human aortic endothelial cells. Forensic Toxicology, 2017, 35, 309-316.	1.4	13
47	Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs. Biochemical Pharmacology, 2017, 138, 185-192.	2.0	13
48	The RING finger- and PDZ domain-containing protein PDZRN3 controls localization of the Mg2+ regulator claudin-16 in renal tube epithelial cells. Journal of Biological Chemistry, 2017, 292, 13034-13044.	1.6	21
49	α-Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology, 2017, 386, 93-102.	2.0	29
50	Upâ€Regulation of Transient Receptor Potential Melastatin 6 Channel Expression by Tumor Necrosis Factorâ€i± in the Presence of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Journal of Cellular Physiology, 2017, 232, 2841-2850.	2.0	6
51	Instability of C154Y variant of aldo-keto reductase 1C3. Chemico-Biological Interactions, 2017, 276, 194-202.	1.7	7
52	Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. Journal of Medicinal Chemistry, 2017, 60, 8441-8455.	2.9	27
53	Up-regulation of claudin-2 expression by aldosterone in colonic epithelial cells of mice fed with NaCl-depleted diets. Scientific Reports, 2017, 7, 12223.	1.6	12
54	Long-chain fatty acids inhibit human members of the aldo-keto reductase 1C subfamily. Journal of Biochemistry, 2017, 162, 371-379.	0.9	11

Τοςηιγυκι Ματςυναga

#	Article	IF	CITATIONS
55	Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species. Toxicology and Applied Pharmacology, 2017, 314, 1-11.	1.3	14
56	Claudin-5, -7, and -18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 293-302.	1.9	43
57	Enhancement of Endothelial Barrier Permeability by Mitragynine. Biological and Pharmaceutical Bulletin, 2017, 40, 1779-1783.	0.6	4
58	Chlorpheniramine Increases Paracellular Permeability to Marker Fluorescein Lucifer Yellow Mediated by Internalization of Occludin in Murine Colonic Epithelial Cells. Biological and Pharmaceutical Bulletin, 2017, 40, 1299-1305.	0.6	14
59	Kaempherol and Luteolin Decrease Claudin-2 Expression Mediated by Inhibition of STAT3 in Lung Adenocarcinoma A549 Cells. Nutrients, 2017, 9, 597.	1.7	57
60	Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids. Archives of Biochemistry and Biophysics, 2016, 609, 69-76.	1.4	7
61	Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2016, 291, 24787-24799.	1.6	31
62	Roles of aldo-keto reductases 1B10 and 1C3 and ATP-binding cassette transporter in docetaxel tolerance. Free Radical Research, 2016, 50, 1296-1308.	1.5	12
63	Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism. Chemico-Biological Interactions, 2016, 256, 142-153.	1.7	29
64	Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase. Biochemical and Biophysical Research Communications, 2016, 472, 231-236.	1.0	23
65	Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1170-1178.	1.9	41
66	Up-Regulation of Carbonyl Reductase 1 Renders Development of Doxorubicin Resistance in Human Gastrointestinal Cancers. Biological and Pharmaceutical Bulletin, 2015, 38, 1309-1319.	0.6	19
67	Hyperosmolarity-Induced Down-Regulation of Claudin-2 Mediated by Decrease in PKCβ-Dependent GATA-2 in MDCK Cells. Journal of Cellular Physiology, 2015, 230, 2776-2787.	2.0	12
68	Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells. Nutrients, 2015, 7, 4578-4592.	1.7	79
69	Synthesis of 8-hydroxy-2-iminochromene derivatives as selective and potent inhibitors of human carbonyl reductase 1. Organic and Biomolecular Chemistry, 2015, 13, 7487-7499.	1.5	15
70	Structure–activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). Fìtoterapìâ, 2015, 101, 51-56.	1.1	33
71	Identification of a determinant for strict NADP(H)-specificity and high sensitivity to mixed-type steroid inhibitor of rabbit aldo–keto reductase 1C33 by site-directed mutagenesis. Archives of Biochemistry and Biophysics, 2015, 569, 19-25.	1.4	1
72	Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo–keto reductase 1B10. Chemico-Biological Interactions, 2015, 230, 30-39.	1.7	34

#	Article	IF	CITATIONS
73	Characterization of hamster NAD ⁺ -dependent 3(17)β-hydroxysteroid dehydrogenase belonging to the aldo-keto reductase 1C subfamily. Journal of Biochemistry, 2015, 158, 425-434.	0.9	2
74	Clathrin-dependent endocytosis of claudin-2 by DFYSP peptide causes lysosomal damage in lung adenocarcinoma A549 cells. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2326-2336.	1.4	9
75	Protective roles of aldo-keto reductase 1B10 and autophagy against toxicity induced by p-quinone metabolites of tert-butylhydroquinone in lung cancer A549 cells. Chemico-Biological Interactions, 2015, 234, 282-289.	1.7	6
76	Induction of aldo-keto reductases (AKR1C1 and AKR1C3) abolishes the efficacy of daunorubicin chemotherapy for leukemic U937 cells. Anti-Cancer Drugs, 2014, 25, 868-877.	0.7	31
77	Oxidized High-Density Lipoprotein. , 2014, , 247-272.		1
78	Cloning and Characterization of Four Rabbit Aldo-Keto Reductases Featuring Broad Substrate Specificity for Xenobiotic and Endogenous Carbonyl Compounds: Relationship with Multiple Forms of Drug Ketone Reductases. Drug Metabolism and Disposition, 2014, 42, 803-812.	1.7	13
79	Synthesis of non-prenyl analogues of baccharin as selective and potent inhibitors for aldo-keto reductase 1C3. Bioorganic and Medicinal Chemistry, 2014, 22, 5220-5233.	1.4	18
80	Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10. Toxicology and Applied Pharmacology, 2014, 278, 180-189.	1.3	25
81	Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2079-2088.	1.9	70
82	Characterization of rabbit morphine 6-dehydrogenase and two NAD+-dependent 3α(17β)-hydroxysteroid dehydrogenases. Archives of Biochemistry and Biophysics, 2013, 529, 131-139.	1.4	9
83	Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chemico-Biological Interactions, 2013, 202, 234-242.	1.7	85
84	Synthesis and structure–activity relationship of 2-phenyliminochromene derivatives as inhibitors for aldo–keto reductase (AKR) 1B10. Bioorganic and Medicinal Chemistry, 2013, 21, 6378-6384.	1.4	23
85	Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D2, and other endogenous and xenobiotic carbonyl compounds. Biochemical Pharmacology, 2013, 86, 1366-1375.	2.0	7
86	Substrate Specificity and Inhibitor Sensitivity of Rabbit 20α-Hydroxysteroid Dehydrogenase. Biological and Pharmaceutical Bulletin, 2013, 36, 1514-1518.	0.6	6
87	Aldo-Keto Reductases as New Therapeutic Targets for Colon Cancer Chemoresistance. Resistance To Targeted Anti-cancer Therapeutics, 2013, , 109-133.	0.1	9
88	Reduction of Cytotoxic p-Quinone Metabolites of tert-Butylhydroquinone by Human Aldo-keto Reductase (AKR) 1B10. Drug Metabolism and Pharmacokinetics, 2012, 27, 553-558.	1.1	13
89	9,10-Phenanthrenequinone Induces Monocytic Differentiation of U937 Cells through Regulating Expression of Aldo-Keto Reductase 1C3. Biological and Pharmaceutical Bulletin, 2012, 35, 1598-1602.	0.6	7
90	Inhibition of Human Aldose Reductase-Like Protein (AKR1B10) by α- and γ-Mangostins, Major Components of Pericarps of Mangosteen. Biological and Pharmaceutical Bulletin, 2012, 35, 2075-2080.	0.6	15

Τοςηιγυκι Ματςυναga

#	Article	IF	CITATIONS
91	Selective Inhibition of Human Type-5 17β-Hydroxysteroid Dehydrogenase (AKR1C3) by Baccharin, a Component of Brazilian Propolis. Journal of Natural Products, 2012, 75, 716-721.	1.5	43
92	Characterization of rabbit aldose reductase-like protein with 3β-hydroxysteroid dehydrogenase activity. Archives of Biochemistry and Biophysics, 2012, 527, 23-30.	1.4	10
93	Aldo–Keto Reductase 1B10 and Its Role in Proliferation Capacity of Drug-Resistant Cancers. Frontiers in Pharmacology, 2012, 3, 5.	1.6	78
94	Design, synthesis and evaluation of caffeic acid phenethyl ester-based inhibitors targeting a selectivity pocket in the active site of human aldo–keto reductase 1B10. European Journal of Medicinal Chemistry, 2012, 48, 321-329.	2.6	51
95	9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant. Cell and Tissue Research, 2012, 347, 407-417.	1.5	14
96	Aldo-keto reductase 1C15 as a quinone reductase in rat endothelial cell: Its involvement in redox cycling of 9,10-phenanthrenequinone. Free Radical Research, 2011, 45, 848-857.	1.5	8
97	Selective Inhibition of the Tumor Marker Aldo-keto Reductase Family Member 1B10 by Oleanolic Acid. Journal of Natural Products, 2011, 74, 1201-1206.	1.5	56
98	Involvement of the aldo–keto reductase, AKR1B10, in mitomycin-c resistance through reactive oxygen species-dependent mechanisms. Anti-Cancer Drugs, 2011, 22, 402-408.	0.7	37
99	Roles of rat and human aldo–keto reductases in metabolism of farnesol and geranylgeraniol. Chemico-Biological Interactions, 2011, 191, 261-268.	1.7	57
100	Protective effect of rat aldo-keto reductase (AKR1C15) on endothelial cell damage elicited by 4-hydroxy-2-nonenal. Chemico-Biological Interactions, 2011, 191, 364-370.	1.7	7
101	Rat Aldose Reductase-Like Protein (AKR1B14) Efficiently Reduces the Lipid Peroxidation Product 4-Oxo-2-nonenal. Biological and Pharmaceutical Bulletin, 2010, 33, 1886-1890.	0.6	14
102	Selective Inhibition of the Tumor Marker AKR1B10 by Antiinflammatory N-Phenylanthranilic Acids and Glycyrrhetic Acid. Biological and Pharmaceutical Bulletin, 2010, 33, 886-890.	0.6	48
103	Toxicity against gastric cancer cells by combined treatment with 5-fluorouracil and mitomycin c: implication in oxidative stress. Cancer Chemotherapy and Pharmacology, 2010, 66, 517-526.	1.1	32
104	Structure-based optimization and biological evaluation of human 20α-hydroxysteroid dehydrogenase (AKR1C1) salicylic acid-based inhibitors. European Journal of Medicinal Chemistry, 2010, 45, 5309-5317.	2.6	21
105	Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. Bioorganic and Medicinal Chemistry, 2010, 18, 2485-2490.	1.4	66
106	Nitric oxide mitigates apoptosis in human endothelial cells induced by 9,10-phenanthrenequinone: Role of proteasomal function. Toxicology, 2010, 268, 191-197.	2.0	14
107	Properties and tissue distribution of a novel aldo–keto reductase encoding in a rat gene (Akr1b10). Archives of Biochemistry and Biophysics, 2010, 503, 230-237.	1.4	23
108	Characterization of a rat NADPH-dependent aldo-keto reductase (AKR1B13) induced by oxidative stress. Chemico-Biological Interactions, 2009, 178, 151-157.	1.7	21

Τοςηιγυκι Ματςυναga

#	Article	IF	CITATIONS
109	Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8. Chemico-Biological Interactions, 2009, 178, 117-126.	1.7	18
110	Involvement of an aldo-keto reductase (AKR1C3) in redox cycling of 9,10-phenanthrenequinone leading to apoptosis in human endothelial cells. Chemico-Biological Interactions, 2009, 181, 52-60.	1.7	39
111	Structure-Guided Design, Synthesis, and Evaluation of Salicylic Acid-Based Inhibitors Targeting a Selectivity Pocket in the Active Site of Human 20α-Hydroxysteroid Dehydrogenase (AKR1C1). Journal of Medicinal Chemistry, 2009, 52, 3259-3264.	2.9	39
112	Potent and selective inhibition of the tumor marker AKR1B10 by bisdemethoxycurcumin: Probing the active site of the enzyme with molecular modeling and site-directed mutagenesis. Biochemical and Biophysical Research Communications, 2009, 389, 128-132.	1.0	54
113	Molecular determinants for the stereospecific reduction of 3-ketosteroids and reactivity towards all-trans-retinal of a short-chain dehydrogenase/reductase (DHRS4). Archives of Biochemistry and Biophysics, 2009, 481, 183-190.	1.4	17
114	Kinetic studies of AKR1B10, human aldose reductase-like protein: Endogenous substrates and inhibition by steroids. Archives of Biochemistry and Biophysics, 2009, 487, 1-9.	1.4	94
115	L-Xylulose reductase is involved in 9,10-phenanthrenequinone-induced apoptosis in human T lymphoma cells. Free Radical Biology and Medicine, 2008, 44, 1191-1202.	1.3	54
116	Characterization of human DHRS4: An inducible short-chain dehydrogenase/reductase enzyme with 3β-hydroxysteroid dehydrogenase activity. Archives of Biochemistry and Biophysics, 2008, 477, 339-347.	1.4	46
117	Human carbonyl reductase 4 is a mitochondrial NADPH-dependent quinone reductase. Biochemical and Biophysical Research Communications, 2008, 377, 1326-1330.	1.0	32
118	Characterization of an Oligomeric Carbonyl Reductase of Dog Liver: Its Identity with Peroxisomal Tetrameric Carbonyl Reductase. Biological and Pharmaceutical Bulletin, 2007, 30, 1787-1791.	0.6	14
119	Rat NAD+-dependent 3α-hydroxysteroid dehydrogenase (AKR1C17): A member of the aldo-keto reductase family highly expressed in kidney cytosol. Archives of Biochemistry and Biophysics, 2007, 464, 122-129.	1.4	10
120	Enzymatic characteristics of an aldo–keto reductase family protein (AKR1C15) and its localization in rat tissues. Archives of Biochemistry and Biophysics, 2007, 465, 136-147.	1.4	22
121	Characterization of rat and mouse NAD+-dependent 3î±/17î²/20î±-hydroxysteroid dehydrogenases and identification of substrate specificity determinants by site-directed mutagenesis. Archives of Biochemistry and Biophysics, 2007, 467, 76-86.	1.4	10
122	Multiplicity of Mammalian Reductases for Xenobiotic Carbonyl Compounds. Drug Metabolism and Pharmacokinetics, 2006, 21, 1-18.	1.1	133
123	Substrate Specificity of a Mouse Aldo-Keto Reductase (AKR1C12). Biological and Pharmaceutical Bulletin, 2006, 29, 2488-2492.	0.6	10
124	Upregulation of immunoproteasomes by nitric oxide: Potential antioxidative mechanism in endothelial cells. Free Radical Biology and Medicine, 2006, 40, 1034-1044.	1.3	87
125	Molecular Cloning of a Novel Type of Rat Cytoplasmic 17β-Hydroxysteroid Dehydrogenase Distinct from the Type 5 Isozyme. Journal of Biochemistry, 2006, 139, 1053-1063.	0.9	19
126	Supplementation of Endothelial Cells with Mitochondria-targeted Antioxidants Inhibit Peroxide-induced Mitochondrial Iron Uptake, Oxidative Damage, and Apoptosis. Journal of Biological Chemistry, 2004, 279, 37575-37587.	1.6	215

Toshiyuki Matsunaga

#	Article	IF	CITATIONS
127	Ceramide-induced Intracellular Oxidant Formation, Iron Signaling, and Apoptosis in Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 28614-28624.	1.6	89
128	NF-κB activation in endothelial cells treated with oxidized high-density lipoprotein. Biochemical and Biophysical Research Communications, 2003, 303, 313-319.	1.0	78
129	Glycated high-density lipoprotein regulates reactive oxygen species and reactive nitrogen species in endothelial cells. Metabolism: Clinical and Experimental, 2003, 52, 42-49.	1.5	35
130	Apoptosis of Endothelial Cells may be Mediated by Genes of Peroxisome Proliferator-activated Receptor .GAMMA.1(PPAR .GAMMA.1) and PPAR.ALPHA. Genes Journal of Atherosclerosis and Thrombosis, 2003, 10, 99-108.	0.9	18
131	Detection of oxidized high-density lipoprotein. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 781, 331-343.	1.2	17
132	Expression of Pyrimidine 5â€2-Nucleotidase Subclass I During Erythrocyte Maturation in Rats. Journal of Hematotherapy and Stem Cell Research, 2001, 10, 703-707.	1.8	1
133	Glycated High-Density Lipoprotein Induces Apoptosis of Endothelial Cells via a Mitochondrial Dysfunction. Biochemical and Biophysical Research Communications, 2001, 287, 714-720.	1.0	65
134	Expression of α-amylase gene in rat liver: Liver-specific amylase has a high affinity to glycogen. Electrophoresis, 2001, 22, 12-17.	1.3	16
135	Formation of oxidized HDL in atherosclerotic foci Seibutsu Butsuri Kagaku, 1998, 42, 245-249.	0.1	0
136	Growth Suppressing Activity for Endothelial Cells Induced from Macrophages by Carboxymethylated Curdlan. Bioscience, Biotechnology and Biochemistry, 1997, 61, 1924-1925.	0.6	56