Rosaria Volpini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4935351/publications.pdf

Version: 2024-02-01

186265 233421 2,388 81 28 45 citations h-index g-index papers 81 81 81 2012 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology, 2021, 190, 108352.	4.1	386
2	N6-Alkyl-2-alkynyl Derivatives of Adenosine as Potent and Selective Agonists at the Human Adenosine A3Receptor and a Starting Point for Searching A2BLigands. Journal of Medicinal Chemistry, 2002, 45, 3271-3279.	6.4	104
3	2-Alkynyl derivatives of adenosine and adenosine-5'-N-ethyluronamide as selective agonists at A2 adenosine receptors. Journal of Medicinal Chemistry, 1992, 35, 2363-2368.	6.4	98
4	New substituted 9-alkylpurines as adenosine receptor ligands. Bioorganic and Medicinal Chemistry, 1998, 6, 523-533.	3.0	82
5	Medicinal Chemistry and Pharmacology of A2B Adenosine Receptors. Current Topics in Medicinal Chemistry, 2003, 3, 427-443.	2.1	81
6	Synthesis and Biological Activity of a New Series of N6-Arylcarbamoyl, 2-(Ar)alkynyl-N6-arylcarbamoyl, and N6-Carboxamido Derivatives of Adenosine-5â€~N-ethyluronamide as A1 and A3 Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 1998, 41, 3174-3185.	6.4	68
7	2-Alkynyl Derivatives of Adenosine-5'-N-ethyluronamide: Selective A2 Adenosine Receptor Agonists with Potent Inhibitory Activity on Platelet Aggregation. Journal of Medicinal Chemistry, 1994, 37, 1720-1726.	6.4	67
8	2-Aralkynyl and 2-Heteroalkynyl Derivatives of Adenosine-5'-N-Ethyluronamide as Selective A2a Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 1995, 38, 1462-1472.	6.4	62
9	[3H]HEMADOâ€" a novel tritiated agonist selective for the human adenosine A3 receptor. European Journal of Pharmacology, 2007, 556, 14-18.	3.5	60
10	8-Bromo-9-alkyl adenine derivatives as tools for developing new adenosine A2A and A2B receptors ligands. Bioorganic and Medicinal Chemistry, 2009, 17, 2812-2822.	3.0	53
11	Medicinal Chemistry of Adenosine A2A Receptor Agonists. Current Topics in Medicinal Chemistry, 2003, 3, 387-401.	2.1	47
12	New adenosine A2A receptor antagonists: Actions on Parkinson's disease models. European Journal of Pharmacology, 2005, 512, 157-164.	3.5	45
13	Innovative functional cAMP assay for studying G protein-coupled receptors: application to the pharmacological characterization of GPR17. Purinergic Signalling, 2011, 7, 463-468.	2.2	45
14	N-Cycloalkyl Derivatives of Adenosine and 1-Deazaadenosine as Agonists and Partial Agonists of the A1Adenosine Receptor. Journal of Medicinal Chemistry, 2000, 43, 250-260.	6.4	44
15	A new ethyladenine antagonist of adenosine A2A receptors: Behavioral andÂbiochemical characterization as an antiparkinsonian drug. Neuropharmacology, 2010, 58, 613-623.	4.1	44
16	Structureâ ⁻ 'Activity Relationships of Adenine and Deazaadenine Derivatives as Ligands for Adenine Receptors, a New Purinergic Receptor Family. Journal of Medicinal Chemistry, 2009, 52, 5974-5989.	6.4	43
17	Adenosine Receptor Modeling: What Does the A2A Crystal Structure Tell Us?. Current Topics in Medicinal Chemistry, 2010, 10, 993-1018.	2.1	42
18	Purinergic P2X receptors: Structural models and analysis ofÂligand-targetÂinteraction. European Journal of Medicinal Chemistry, 2015, 89, 561-580.	5.5	41

#	Article	IF	Citations
19	Medicinal Chemistry of P2X Receptors: Agonists and Orthosteric Antagonists. Current Medicinal Chemistry, 2015, 22, 915-928.	2.4	41
20	N6-Methoxy-2-alkynyladenosine Derivatives as Highly Potent and Selective Ligands at the Human A3 Adenosine Receptor. Journal of Medicinal Chemistry, 2007, 50, 1222-1230.	6.4	38
21	Evidence for the Existence of a Specific Gâ€Proteinâ€Coupled Receptor Activated by Guanosine. ChemMedChem, 2011, 6, 1074-1080.	3.2	36
22	Characterization of potent ligands at human recombinant adenosine receptors. Drug Development Research, 1998, 45, 176-181.	2.9	34
23	Synthesis and Biological Evaluation of 2-Alkynyl-N6-methyl-5′-N-methylcarboxamidoadenosine Derivatives as Potent and Highly Selective Agonists for the Human Adenosine A3Receptor‡. Journal of Medicinal Chemistry, 2009, 52, 7897-7900.	6.4	34
24	9-Ethyladenine derivatives as adenosine receptor antagonists: 2- and 8-substitution results in distinct selectivities. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 629-634.	3.0	33
25	Update on novel purinergic P2X3 and P2X2/3 receptor antagonists and their potential therapeutic applications. Expert Opinion on Therapeutic Patents, 2019, 29, 943-963.	5.0	33
26	Adenosine A _{2A} Receptor Antagonists: New 8â€5ubstituted 9â€Ethyladenines as Tools for inâ€vivo Rat Models of Parkinson's Disease. ChemMedChem, 2009, 4, 1010-1019.	3.2	32
27	Dual target strategy: combining distinct nonâ€dopaminergic treatments reduces neuronal cell loss and synergistically modulates <scp>l</scp> â€ <scp>DOPA</scp> â€induced rotational behavior in a rodent model of Parkinson's disease. Journal of Neurochemistry, 2015, 134, 740-747.	3.9	31
28	The 1,2,4-Triazolo[4,3- <i>a</i>]pyrazin-3-one as a Versatile Scaffold for the Design of Potent Adenosine Human Receptor Antagonists. Structural Investigations to Target the A _{2A} Receptor Subtype. Journal of Medicinal Chemistry, 2017, 60, 5772-5790.	6.4	31
29	The Gâ€Proteinâ€Coupled Receptor GPR17: Overview and Update. ChemMedChem, 2016, 11, 2567-2574.	3.2	28
30	Adenosine Receptors as Neuroinflammation Modulators: Role of A1 Agonists and A2A Antagonists. Cells, 2020, 9, 1739.	4.1	27
31	Molecular modeling study on potent and selective adenosine A3 receptor agonists. Bioorganic and Medicinal Chemistry, 2010, 18, 7923-7930.	3.0	25
32	Neuroprotective potential of adenosine A 1 receptor partial agonists in experimental models of cerebral ischemia. Journal of Neurochemistry, 2019, 149, 211-230.	3.9	24
33	Exploring the 7-oxo-thiazolo[5,4-d]pyrimidine core for the design of new human adenosine A3 receptor antagonists. Synthesis, molecular modeling studies and pharmacological evaluation. European Journal of Medicinal Chemistry, 2015, 96, 105-121.	5.5	23
34	Regulation of adenosine A _{2A} receptor gene expression in a model of binge eating in the amygdaloid complex of female rats. Journal of Psychopharmacology, 2019, 33, 1550-1561.	4.0	23
35	Adenine-Based Acyclic Nucleotides as Novel P2X ₃ Receptor Ligands. Journal of Medicinal Chemistry, 2009, 52, 4596-4603.	6.4	22
36	Simulation and comparative analysis of binding modes of nucleoside and non-nucleoside agonists at the A2B adenosine receptor. In Silico Pharmacology, 2013, 1, 24.	3.3	22

3

#	Article	IF	CITATIONS
37	Novel potent and highly selective human A3 adenosine receptor antagonists belonging to the 4-amido-2-arylpyrazolo[3,4-c]quinoline series: Molecular docking analysis and pharmacological studies. Bioorganic and Medicinal Chemistry, 2009, 17, 401-410.	3.0	21
38	Different efficacy of adenosine and NECA derivatives at the human A3 adenosine receptor: Insight into the receptor activation switch. Biochemical Pharmacology, 2014, 87, 321-331.	4.4	19
39	1,2,4-Triazolo[1,5-a]quinoxaline derivatives and their simplified analogues as adenosine A3 receptor antagonists. Synthesis, structure–affinity relationships and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2015, 23, 9-21.	3.0	18
40	Purine and deazapurine nucleosides: synthetic approaches, molecular modelling and biological activity. Il Farmaco, 2003, 58, 193-204.	0.9	15
41	Purinergic Ligands as Potential Therapeutic Tools for the Treatment of Inflammation-Related Intestinal Diseases. Frontiers in Pharmacology, 2018, 9, 212.	3.5	15
42	Non-Nucleoside Agonists of the Adenosine Receptors: An Overview. Pharmaceuticals, 2019, 12, 150.	3.8	15
43	Antioxidant-Conjugated 1,2,4-Triazolo [4,3- <i>a</i>] pyrazin-3-one Derivatives: Highly Potent and Selective Human A _{2A} Adenosine Receptor Antagonists Possessing Protective Efficacy in Neuropathic Pain. Journal of Medicinal Chemistry, 2019, 62, 8511-8531.	6.4	15
44	Synthesis of New Nucleosides by coupling of chloropurines with 2- and 3-deoxy derivatives of N-methyl-D-ribofuranuronamide. Helvetica Chimica Acta, 1998, 81, 145-152.	1.6	14
45	Synthesis and Biological Activity of Trisubstituted Adenines as A _{2A} Adenosine Receptor Antagonists. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1443-1446.	1.1	14
46	In vitro antibacterial activity of different adenosine analogues. Journal of Medical Microbiology, 2012, 61, 525-528.	1.8	14
47	8-(2-Furyl)adenine derivatives as A2A adenosine receptor ligands. European Journal of Medicinal Chemistry, 2013, 70, 525-535.	5.5	14
48	Exploring the 2- and 5-positions of the pyrazolo [4,3-d] pyrimidin-7-amino scaffold to target human A1 and A2A adenosine receptors. Bioorganic and Medicinal Chemistry, 2016, 24, 2794-2808.	3.0	14
49	Novel 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-one derivatives as potent human adenosine A1 and A2A receptor antagonists. Evaluation of their protective effect against \hat{I}^2 -amyloid-induced neurotoxicity in SH-SY5Y cells. Bioorganic Chemistry, 2019, 87, 380-394.	4.1	14
50	The Anti-Inflammatory and Pain-Relieving Effects of AR170, an Adenosine A3 Receptor Agonist, in a Rat Model of Colitis. Cells, 2020, 9, 1509.	4.1	13
51	Combined Therapy of A1AR Agonists and A2AAR Antagonists in Neuroinflammation. Molecules, 2021, 26, 1188.	3.8	13
52	New 2,6,9-trisubstituted adenines as adenosine receptor antagonists: a preliminary SAR profile. Purinergic Signalling, 2007, 3, 339-346.	2.2	12
53	The Length and Flexibility of the 2â€Substituent of 9â€Ethyladenine Derivatives Modulate Affinity and Selectivity for the Human A _{2A} Adenosine Receptor. ChemMedChem, 2016, 11, 1829-1839.	3.2	12
54	P2X3 Receptor Ligands: Structural Features and Potential Therapeutic Applications. Frontiers in Pharmacology, 2021, 12, 653561.	3.5	12

#	Article	IF	CITATIONS
55	2- and 8-alkynyl-9-ethyladenines: Synthesis and biological activity at human and rat adenosine receptors. Purinergic Signalling, 2005, 1, 173-181.	2.2	11
56	New potent and selective A1 adenosine receptor antagonists as potential tools for the treatment of gastrointestinal diseases. European Journal of Medicinal Chemistry, 2018, 151, 199-213.	5.5	11
57	Anticancer activity study of A 3 adenosine receptor agonists. Life Sciences, 2018, 205, 155-163.	4.3	11
58	$2\hat{a}$ €², $3\hat{a}$ €²-O-Substituted ATP derivatives as potent antagonists of purinergic P2X3 receptors and potential analgesic agents. Purinergic Signalling, 2017, 13, 61-74.	2.2	10
59	Ex-vivo absorption study of lysine R-lipoate salt, a new pharmaceutical form of R-ALA. European Journal of Pharmaceutical Sciences, 2018, 118, 200-207.	4.0	10
60	Novel human adenosine receptor antagonists based on the 7-amino-thiazolo [5,4-d] pyrimidine scaffold. Structural investigations at the 2-, 5- and 7-positions to enhance affinity and tune selectivity. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 563-569.	2.2	10
61	Amino-3,5-Dicyanopyridines Targeting the Adenosine Receptors. Ranging from Pan Ligands to Combined A1/A2B Partial Agonists. Pharmaceuticals, 2019, 12, 159.	3.8	9
62	GPR17 receptor modulators and their therapeutic implications: review of recent patents. Expert Opinion on Therapeutic Patents, 2019, 29, 85-95.	5.0	9
63	Discovery of first-in-class multi-target adenosine A2A receptor antagonists-carbonic anhydrase IX and XII inhibitors. 8-Amino-6-aryl-2-phenyl-1,2,4-triazolo [4,3-a]pyrazin-3-one derivatives as new potential antitumor agents. European Journal of Medicinal Chemistry, 2020, 201, 112478.	5.5	9
64	Approaches for designing and discovering purinergic drugs for gastrointestinal diseases. Expert Opinion on Drug Discovery, 2020, 15, 687-703.	5.0	9
65	A _{2A} Adenosine Receptor Antagonists and their Potential in Neurological Disorders. Current Medicinal Chemistry, 2022, 29, 4780-4795.	2.4	9
66	2-ClATP exerts anti-tumoural actions not mediated by P2 receptors in neuronal and glial cell lines. Biochemical Pharmacology, 2004, 67, 621-630.	4.4	8
67	New 9-methyl-8-(4-hydroxyphenyl)adenine derivatives as A1 adenosine receptor antagonists. Collection of Czechoslovak Chemical Communications, 2011, 76, 1379-1393.	1.0	8
68	Simulation and Comparative Analysis of Different Binding Modes of Nonâ€nucleoside Agonists at the A _{2A} Adenosine Receptor. Molecular Informatics, 2016, 35, 403-413.	2.5	8
69	Investigation on $2\hat{a} \in ^2$, $3\hat{a} \in ^2$ - <i>O</i> Substituted ATP Derivatives and Analogs as Novel P2X3 Receptor Antagonists. ACS Medicinal Chemistry Letters, 2019, 10, 493-498.	2.8	8
70	Overview on Radiolabel-Free in vitro Assays for GPCRs. Mini-Reviews in Medicinal Chemistry, 2016, 17, 3-14.	2.4	5
71	A2A Adenosine Receptor Antagonists: Are Triazolotriazine and Purine Scaffolds Interchangeable?. Molecules, 2022, 27, 2386.	3.8	5
72	Evaluation of adenine as scaffold for the development of novel P2X3 receptor antagonists. European Journal of Medicinal Chemistry, 2013, 65, 41-50.	5.5	4

#	Article	IF	CITATIONS
73	New A2A adenosine receptor antagonists: a structure-based upside-down interaction in the receptor cavity. Bioorganic Chemistry, 2019, 92, 103183.	4.1	4
74	New 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-one derivatives. Evaluation of different moieties on the 6-aryl ring to obtain potent and selective human A2A adenosine receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127126.	2.2	4
75	Design and Synthesis of Novel Thiazolo[5,4-d]pyrimidine Derivatives with High Affinity for Both the Adenosine A1 and A2A Receptors, and Efficacy in Animal Models of Depression. Pharmaceuticals, 2021, 14, 657.	3.8	4
76	4-Heteroaryl Substituted Amino-3,5-Dicyanopyridines as New Adenosine Receptor Ligands: Novel Insights on Structure-Activity Relationships and Perspectives. Pharmaceuticals, 2022, 15, 478.	3.8	4
77	New sensible method to quantize the intestinal absorption of receptor ligands. Bioorganic and Medicinal Chemistry, 2019, 27, 3328-3333.	3.0	2
78	A3 Adenosine Receptor Antagonists with Nucleoside Structures and Their Anticancer Activity. Pharmaceuticals, 2022, 15, 164.	3.8	1
79	A patent review of adenosine A _{2B} receptor antagonists (2016-present). Expert Opinion on Therapeutic Patents, 2022, 32, 689-712.	5.0	1
80	Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A1 Receptor Ligands. Cells, 2021, 10, 3560.	4.1	1
81	Inside Cover: Evidence for the Existence of a Specific Gâ€Protein-Coupled Receptor Activated by Guanosine (ChemMedChem 6/2011). ChemMedChem, 2011, 6, 946-946.	3.2	O