Do-Hong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4934755/publications.pdf Version: 2024-02-01

DO-HONG KIM

#	Article	IF	CITATIONS
1	Weavable and Highly Efficient Organic Light-Emitting Fibers for Wearable Electronics: A Scalable, Low-Temperature Process. Nano Letters, 2018, 18, 347-356.	9.1	113
2	Extracting optical modes of organic light-emitting diodes using quasi-periodic WO_3 nanoislands. Optics Express, 2013, 21, 5424.	3.4	45
3	Highly conductive and flexible color filter electrode using multilayer film structure. Scientific Reports, 2016, 6, 29341.	3.3	40
4	Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics. ACS Applied Materials & Interfaces, 2017, 9, 16343-16350.	8.0	39
5	Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes. Organic Electronics, 2014, 15, 3183-3190.	2.6	22
6	Color Purifying Optical Nanothin Film for Three Primary Colors in Optoelectronics. ACS Photonics, 2018, 5, 3322-3330.	6.6	21
7	Microcavity effect using nanoparticles to enhance the efficiency of organic light-emitting diodes. Optics Express, 2015, 23, 19863.	3.4	19
8	Nanosinusoidal Surface Zinc Oxide for Optical Out-coupling of Inverted Organic Light-Emitting Diodes. ACS Photonics, 2018, 5, 4061-4067.	6.6	15
9	Phosphorescent transparent organic light-emitting diodes with enhanced outcoupling efficiency: Reduction of surface plasmon losses. Organic Electronics, 2014, 15, 1222-1228.	2.6	11
10	Ultra-High-Resolution Organic Light-Emitting Diodes with Color Conversion Electrode. ACS Photonics, 2018, 5, 1891-1897.	6.6	11
11	Analysis of Out-Coupling Mechanism in Organic Light-Emitting Diodes. IEEE Photonics Technology Letters, 2014, 26, 896-899.	2.5	8
12	Investigation of voltage reduction in nanostructure-embedded organic light-emitting diodes. Organic Electronics, 2014, 15, 260-265.	2.6	5
13	Suppressing surface plasmon losses to improve the efficiency of blue organic light-emitting diodes using the plasmonic quasi-bandgap phenomenon. Photonics Research, 2021, 9, 1784.	7.0	5
14	Pâ€127: Angle Insensitive Flexible Color Filter Electrodes. Digest of Technical Papers SID International Symposium, 2017, 48, 1738-1741.	0.3	2
15	Pâ€110: Efficient Quantum Dot Lightâ€Emitting Diodes by Reducing Oxygen Vacancies of ZnO Nanoparticles with Recycling Process. Digest of Technical Papers SID International Symposium, 2019, 50, 1666-1668.	0.3	1
16	Pâ€160: Application of Graphene Oxide to Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2014, 45, 1581-1582.	0.3	0
17	Optical Engineering for Plasmonic Quasi-Bandgap by Effective Asymmetric Plasmonic Waveguide: Applications to High Efficiency Organic Light Emitting Diodes. , 2019, , .		0