Xiu-mei Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4934644/xiu-mei-wang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 50 133 2,975 h-index g-index citations papers 6.2 3,846 147 5.29 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
133	Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. <i>PLoS ONE</i> , 2007 , 2, e190	3.7	353
132	Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. <i>Theranostics</i> , 2018 , 8, 3284-3307	12.1	172
131	In vitro behavior of neural stem cells in response to different chemical functional groups. <i>Biomaterials</i> , 2009 , 30, 1036-44	15.6	157
130	Designer functionalized self-assembling peptide nanofiber scaffolds for growth, migration, and tubulogenesis of human umbilical vein endothelial cells. <i>Soft Matter</i> , 2008 , 4, 2388	3.6	107
129	Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. <i>ACS Applied Materials & Materials & Interfaces</i> , 2017 , 9, 33660-33673	9.5	106
128	Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. <i>Acta Biomaterialia</i> , 2017 , 55, 296-309	10.8	96
127	Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. <i>Acta Biomaterialia</i> , 2013 , 9, 6798-805	10.8	88
126	Hyaluronic acid-based scaffold for central neural tissue engineering. <i>Interface Focus</i> , 2012 , 2, 278-91	3.9	87
125	Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth. <i>Nanoscale</i> , 2016 , 8, 10252-65	7.7	80
124	Advances in the surface modification techniques of bone-related implants for last 10 years. <i>International Journal of Energy Production and Management</i> , 2014 , 1, 67-79	5.3	69
123	In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. <i>Nanoscale</i> , 2012 , 4, 2720-7	7.7	69
122	Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. <i>Theranostics</i> , 2018 , 8, 503	9 ⁻¹² 058	₃ 57
121	The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation. <i>Biomedical Materials (Bristol)</i> , 2009 , 4, 015020	3.5	53
120	Mineralized Collagen: Rationale, Current Status, and Clinical Applications. <i>Materials</i> , 2015 , 8, 4733-4750	3.5	50
119	Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. <i>International Journal of Nanomedicine</i> , 2018 , 13, 2883-2895	7.3	49
118	Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. <i>Theranostics</i> , 2020 , 10, 1590-1603	12.1	46
117	Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. <i>Tissue Engineering - Part B: Reviews</i> , 2019 , 25, 398-411	7.9	45

116	An Antimicrobial Peptide-Loaded Gelatin/Chitosan Nanofibrous Membrane Fabricated by Sequential Layer-by-Layer Electrospinning and Electrospraying Techniques. <i>Nanomaterials</i> , 2018 , 8,	5.4	44	
115	Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. <i>Nano Research</i> , 2018 , 11, 247	7 0 -248	7 ³⁹	
114	BMP7-Based Functionalized Self-Assembling Peptides for Nucleus Pulposus Tissue Engineering. <i>ACS Applied Materials & Discourt Materials</i>	9.5	38	
113	In Situ Articular Cartilage Regeneration through Endogenous Reparative Cell Homing Using a Functional Bone Marrow-Specific Scaffolding System. <i>ACS Applied Materials & Diterfaces</i> , 2018 , 10, 38715-38728	9.5	38	
112	Osteogenic Differentiation Gene Expression Profiling of hMSCs on Hydroxyapatite and Mineralized Collagen. <i>Tissue Engineering - Part A</i> , 2016 , 22, 170-81	3.9	36	
111	Scaffolds for central nervous system tissue engineering. Frontiers of Materials Science, 2012 , 6, 1-25	2.5	36	
110	Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. <i>Theranostics</i> , 2020 , 10, 8227-8249	12.1	31	
109	A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration. <i>Nano Research</i> , 2018 , 11, 4599-4613	10	30	
108	Directing neural stem cell fate with biomaterial parameters for injured brain regeneration. <i>Progress in Natural Science: Materials International</i> , 2013 , 23, 103-112	3.6	30	
107	Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration. <i>Nanoscale</i> , 2019 , 11, 19943-19958	₃ 7.7	30	
106	Fabrication of Antimicrobial Peptide-Loaded PLGA/Chitosan Composite Microspheres for Long-Acting Bacterial Resistance. <i>Molecules</i> , 2017 , 22,	4.8	29	
105	Bioactive Self-Assembling Peptide Hydrogels Functionalized with Brain-Derived Neurotrophic Factor and Nerve Growth Factor Mimicking Peptides Synergistically Promote Peripheral Nerve Regeneration. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2994-3005	5.5	28	
104	Self-assembling peptide hydrogel scaffolds support stem cell-based hair follicle regeneration. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2016 , 12, 2115-2125	6	27	
103	A fully biodegradable and self-electrified device for neuroregenerative medicine. <i>Science Advances</i> , 2020 , 6,	14.3	26	
102	Dual directions to address the problem of aseptic loosening via electrospun PLGA @ aspirin nanofiber coatings on titanium. <i>Biomaterials</i> , 2020 , 257, 120237	15.6	26	
101	3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. <i>Materials</i> , 2019 , 12,	3.5	25	
100	Combined effect of ion concentration and functional groups on surface chemistry modulated CaCO3 crystallization. <i>CrystEngComm</i> , 2012 , 14, 6647	3.3	25	
99	Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen. <i>International Journal of Energy Production and Management</i> 2016 3 33-40	5.3	24	

98	Mineralized Collagen-Based Composite Bone Materials for Cranial Bone Regeneration in Developing Sheep. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 1092-1099	5.5	23
97	Manganese-Based Magnetic Layered Double Hydroxide Nanoparticle: A pH-Sensitive and Concurrently Enhanced /-Weighted Dual-Mode Magnetic Resonance Imaging Contrast Agent. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 2555-2562	5.5	22
96	Enhancement of nano-hydroxyapatite bonding to dentin through a collagen/calcium dual-affinitive peptide for dentinal tubule occlusion. <i>Journal of Biomaterials Applications</i> , 2014 , 29, 268-277	2.9	22
95	Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior. <i>International Journal of Energy Production and Management</i> , 2016 , 3, 309-317	5.3	22
94	Tuning pore features of mineralized collagen/PCL scaffolds for cranial bone regeneration in a rat model. <i>Materials Science and Engineering C</i> , 2020 , 106, 110186	8.3	22
93	Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. <i>Science China Life Sciences</i> , 2018 , 61, 448-456	8.5	21
92	Neural tissue engineering: the influence of scaffold surface topography and extracellular matrix microenvironment. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 567-584	7.3	21
91	Effect of hierarchically aligned fibrin hydrogel in regeneration of spinal cord injury demonstrated by tractography: A pilot study. <i>Scientific Reports</i> , 2017 , 7, 40017	4.9	20
90	A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep. <i>International Journal of Energy Production and Management</i> , 2018 , 5, 283-292	5.3	20
89	Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. <i>International Journal of Nanomedicine</i> , 2020 , 15, 7523-7551	7.3	20
88	Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. <i>International Journal of Energy Production and Management</i> , 2019 , 6, 325-334	5.3	19
87	Clinical evaluations of mineralized collagen in the extraction sites preservation. <i>International Journal of Energy Production and Management</i> , 2016 , 3, 41-8	5.3	19
86	Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution. <i>International Journal of Energy Production and Management</i> , 2015 , 2, 187-95	5.3	19
85	Three-dimensional self-assembling nanofiber matrix rejuvenates aged/degenerative human tendon stem/progenitor cells. <i>Biomaterials</i> , 2020 , 236, 119802	15.6	18
84	Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation. <i>Frontiers of Materials Science</i> , 2016 , 10, 260-269	2.5	18
83	Calcium carbonate crystallization controlled by functional groups: A mini-review. <i>Frontiers of Materials Science</i> , 2013 , 7, 62-68	2.5	18
82	Evolution of calcium phosphate crystallization on three functional group surfaces with the same surface density. <i>CrystEngComm</i> , 2012 , 14, 6695	3.3	16
81	Injectable bone cement based on mineralized collagen. <i>Journal of Biomedical Materials Research -</i> Part B Applied Biomaterials, 2010 , 94, 72-9	3.5	16

(2017-2019)

80	nopographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 7090-7109	7.3	16
79	Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1064, 297-312	3.6	16
78	Self-assembling peptide nanofiber hydrogels for central nervous system regeneration. <i>Frontiers of Materials Science</i> , 2015 , 9, 1-13	2.5	15
77	Osteogenesis effects of magnetic nanoparticles modified-porous scaffolds for the reconstruction of bone defect after bone tumor resection. <i>International Journal of Energy Production and Management</i> , 2019 , 6, 373-381	5.3	15
76	Mesenchymal Stem Cell-Laden Hydrogel Microfibers for Promoting Nerve Fiber Regeneration in Long-Distance Spinal Cord Transection Injury. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 1165-1	175	15
75	Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. <i>Theranostics</i> , 2020 , 10, 6544-6560	12.1	14
74	Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration. <i>Advanced Materials</i> , 2021 , 33, e2106175	24	14
73	Mineralization of calcium phosphate controlled by biomimetic self-assembled peptide monolayers via surface electrostatic potentials. <i>Bioactive Materials</i> , 2020 , 5, 387-397	16.7	13
72	Directional axonal regrowth induced by an aligned fibrin nanofiber hydrogel contributes to improved motor function recovery in canine L2 spinal cord injury. <i>Journal of Materials Science: Materials in Medicine</i> , 2020 , 31, 40	4.5	12
71	Gene expression profiling and mechanism study of neural stem cells response to surface chemistry. <i>International Journal of Energy Production and Management</i> , 2014 , 1, 37-47	5.3	12
70	Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 5385-5413	7-3	12
69	A Customized Self-Assembling Peptide Hydrogel-Wrapped Stem Cell Factor Targeting Pulp Regeneration Rich in Vascular-Like Structures. <i>ACS Omega</i> , 2020 , 5, 16568-16574	3.9	10
68	Melatonin potentiates "inside-out" nano-thermotherapy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles. International Journal of Nanomedicine, 2017, 12, 7351-7363	7.3	10
67	Image-guided stem cells with functionalized self-assembling peptide nanofibers for treatment of acute myocardial infarction in a mouse model. <i>American Journal of Translational Research (discontinued)</i> , 2017 , 9, 3723-3731	3	10
66	Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. <i>International Journal of Energy Production and Management</i> , 2020 , 7, 515-525	5.3	9
65	Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays. <i>Frontiers of Materials Science</i> , 2017 , 11, 318-327	2.5	9
64	In VivoOsteogenesis of Vancomycin Loaded Nanohydroxyapatite/Collagen/Calcium Sulfate Composite for Treating Infectious Bone Defect Induced by Chronic Osteomyelitis. <i>Journal of Nanomaterials</i> , 2015 , 2015, 1-8	3.2	9
63	Comparison of rabbit rib defect regeneration with and without graft. <i>Journal of Materials Science: Materials in Medicine</i> , 2017 , 28, 2	4.5	8

62	Poly(methyl methacrylate) bone cement composited with mineralized collagen for osteoporotic vertebral compression fractures in extremely old patients. <i>International Journal of Energy Production and Management</i> , 2020 , 7, 29-34	5.3	7
61	Clinical observations of osteoporotic vertebral compression fractures by using mineralized collagen modified polymethylmethacrylate bone cement. <i>International Journal of Energy Production and Management</i> , 2017 , 4, 105-109	5.3	7
60	Hierarchically electrospraying a PLGA@chitosan sphere-in-sphere composite microsphere for multi-drug-controlled release. <i>International Journal of Energy Production and Management</i> , 2020 , 7, 381	- <u>3</u> 90	7
59	In Vitro Monolayer Culture of Dispersed Neural Stem Cells on the E-Cadherin-Based Substrate with Long-Term Stemness Maintenance. <i>ACS Omega</i> , 2019 , 4, 18136-18146	3.9	6
58	Fabrication and characterization of aligned fibrin nanofiber hydrogel loaded with PLGA microspheres. <i>Macromolecular Research</i> , 2017 , 25, 528-533	1.9	6
57	A hybrid substratum for primary hepatocyte culture that enhances hepatic functionality with low serum dependency. <i>International Journal of Nanomedicine</i> , 2015 , 10, 2313-23	7.3	6
56	Various fates of neuronal progenitor cells observed on several different chemical functional groups. <i>Frontiers of Materials Science</i> , 2011 , 5, 358-366	2.5	6
55	Tanshinone IIA improves functional recovery in spinal cord injury-induced lower urinary tract dysfunction. <i>Neural Regeneration Research</i> , 2017 , 12, 267-275	4.5	6
54	Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. <i>Bioactive Materials</i> , 2022 , 8, 529-	5 1 67	6
53	Terminal Group Modification of Carbon Nanotubes Determines Covalently Bound Osteogenic Peptide Performance. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 865-878	5.5	5
52	Research trends in biomimetic medical materials for tissue engineering: commentary. <i>Biomaterials Research</i> , 2016 , 20, 8	16.8	5
51	Crosstalk between PC12 cells and endothelial cells in an artificial neurovascular niche constructed by a dual-functionalized self-assembling peptide nanofiber hydrogel. <i>Nano Research</i> ,1	10	5
50	A multi-modal delivery strategy for spinal cord regeneration using a composite hydrogel presenting biophysical and biochemical cues synergistically. <i>Biomaterials</i> , 2021 , 276, 120971	15.6	5
49	Effect of in vitro collagen fibrillogenesis on Langmuir-Blodgett (LB) deposition for cellular behavior regulation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 179, 48-55	6	4
48	Self-assembled monolayers of alkanethiolates on surface chemistry groups in osteosarcoma cells. <i>Molecular Medicine Reports</i> , 2015 , 11, 975-81	2.9	4
47	Cancer cell proliferation controlled by surface chemistry in its microenvironment. <i>Frontiers of Materials Science</i> , 2011 , 5, 412-416	2.5	4
46	Biologically modified implantation as therapeutic bioabsorbable materials for bone defect repair <i>Regenerative Therapy</i> , 2022 , 19, 9-23	3.7	4
45	A comparison study between hybrid surgery and anterior cervical discectomy and fusion for the treatment of multilevel cervical spondylosis. <i>Bone and Joint Journal</i> , 2020 , 102-B, 981-996	5.6	4

(2017-2019)

44	Is cell transplantation a reliable therapeutic strategy for spinal cord injury in clinical practice? A systematic review and meta-analysis from 22 clinical controlled trials. <i>European Spine Journal</i> , 2019 , 28, 1092-1112	2.7	3
43	Sustained-release of sclerostin single-chain antibody fragments using poly(lactic-co-glycolic acid) microspheres for osteoporotic fracture repair. <i>Journal of Biomedical Materials Research - Part A</i> , 2019 , 107, 1832-1840	5.4	3
42	Electrospraying and Electrospinning for Nanobiomaterial Fabrication 2017, 143-163		3
41	Novel Inorganic Gatekeeper Strategy for Obtaining Controlled Release in Mesoporous Silica Nanoparticles. <i>Chemistry Letters</i> , 2014 , 43, 854-856	1.7	2
40	Metallic Nanobiomaterials 2017 , 39-63		2
39	Nanopatterning Techniques 2017 , 189-210		2
38	Structural alignment guides oriented migration and differentiation of endogenous neural stem cells for neurogenesis in brain injury treatment. <i>Biomaterials</i> , 2021 , 280, 121310	15.6	2
37	Repairing Skull Defects in Children with Nano-Hap/Collagen Composites: A Clinical Report of Thirteen Cases. <i>Translational Neuroscience and Clinics</i> , 2016 , 2, 31-37		2
36	Comparison of dynamic mechanical properties of dentin between deciduous and permanent teeth. <i>Connective Tissue Research</i> , 2021 , 62, 402-410	3.3	2
35	Modified poly(methyl methacrylate) bone cement in the treatment of Kfhmell disease. <i>International Journal of Energy Production and Management</i> , 2021 , 8, rbaa051	5.3	2
34	Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model <i>Science Advances</i> , 2022 , 8, eabk0011	14.3	2
33	A novel and facile prepared wound dressing based on large expanded graphite worms. <i>Journal of Materials Research</i> , 2019 , 34, 490-499	2.5	1
32	Nonconventional Biosensors Based on Nanomembrane Materials 2017 , 241-257		1
31	Nanobiomaterials for Molecular Imaging 2017 , 259-279		1
30	Engineering Nanobiomaterials for Improved Tissue Regeneration 2017, 281-304		1
29	Nanobiomaterials for Cancer Therapy 2017 , 305-327		1
28	Chemical Synthesis and Biomedical Applications of Iron Oxide Nanoparticles 2017 , 329-358		1
27	Biosafety of Carbon-Based Nanoparticles and Nanocomposites 2017 , 431-458		1

2.5

Clinical Translation and Safety Regulation of Nanobiomaterials 2017, 459-479 26 7 Carbon-Based Nanobiomaterials 2017, 85-104 25 Hierarchical self-assembly of a collagen mimetic peptide (PKG) n (POG)2n (DOG) n via electrostatic 24 2.5 1 interactions. Frontiers of Materials Science, **2011**, 5, 293-300 Quantitatively Studying Nano-mechanical Properties within the Prism and Organic Sheath of 23 Enamel. Materials Research Society Symposia Proceedings, 2005, 874, 1 Histological Changes of Cervical Disc Tissue in Patients with Degenerative Ossification.. Journal of 22 2.3 1 Korean Neurosurgical Society, 2022, White matter regeneration induced by aligned fibrin nanofiber hydrogel contributes to motor functional recovery in canine T12 spinal cord injury.. International Journal of Energy Production and 21 5.3 Management, 2022, 9, rbab069 Characterization, antioxidant activity, and biocompatibility of selenium nanoparticle-loaded 20 1 thermosensitive chitosan hydrogels. Journal of Biomaterials Science, Polymer Edition, **2021**, 32, 1370-138 $^{3.5}$ All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation. Nanoscale, 19 7.7 **2021**, 13, 14525-14537 Biomimetic Nanohydroxyapatite Synthesized With/Without Tris-Buffered Simulated Body Fluid: A 18 1.3 1 Comparative Analysis. Journal of Nanoscience and Nanotechnology, 2018, 18, 4423-4427 Culture of pyramidal neural precursors, neural stem cells, and fibroblasts on various biomaterials. 17 3.5 Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2168-2186 Construction and Characterizations of Antibacterial Surfaces Based on Self-Assembled Monolayer 16 2.9 1 of Antimicrobial Peptides (Pac-525) Derivatives on Gold. Coatings, 2021, 11, 1014 Chitosan Tubes Prefilled with Aligned Fibrin Nanofiber Hydrogel Enhance Facial Nerve 15 3.9 Regeneration in Rabbits. ACS Omega, 2021, 6, 26293-26301 Surface Modification of Metallic Implants with Nanotubular Arrays via Electrochemical Anodization O 14 2017, 211-238 Biphasic mineralized collagen-based composite scaffold for cranial bone regeneration in 13 5.3 0 developing sheep.. International Journal of Energy Production and Management, 2022, 9, rbac004 Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin 12 24 O Regeneration (Adv. Mater. 45/2021). Advanced Materials, 2021, 33, 2170356 Influence of input signal on injection performance for needle driven piezoelectric micro-jet device. 11 1.7 Microsystem Technologies, **2021**, 27, 2009-2019 Hypoxia-Overcoming Breast-Conserving Treatment by Magnetothermodynamic Implant for a Localized Free-Radical Burst Combined with Hyperthermia. ACS Applied Materials & Damp; Interfaces, 10 9.5 Ο 2021, 13, 35484-35493

A novel honeycomb cell assay kit designed for evaluating horizontal cell migration in response to

functionalized self-assembling peptide hydrogels. Frontiers of Materials Science, 2017, 11, 13-21

LIST OF PUBLICATIONS

- 8 Nanobiomaterials: State of the Art **2017**, 3-35
- 7 Gold Nanoparticles and Their Bioapplications **2017**, 359-377
- 6 Silicon-Based Nanoparticles for Drug Delivery **2017**, 379-402
- 5 Dendritic-Polymer-Based Nanomaterials for Cancer Diagnosis and Therapy **2017**, 403-428
- 4 Polymeric Nanobiomaterials **2017**, 65-84
- 3 Molecular Self-Assembly for Nanobiomaterial Fabrication 2017, 107-141
- Layer-by-Layer Technique: From Capsule Assembly to Application in Biological Domains 2017, 165-187
- Microstructure And Mechanical Properties Of Skeletal Bone In Gene-Mutated Stpseldtl28d And Wild-Type Zebrafish (Danio Rerio). *Materials Research Society Symposia Proceedings*, **2001**, 711, 1