Hironori Waki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4934627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine, 2001, 7, 941-946.	15.2	4,370
2	Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine, 2002, 8, 1288-1295.	15.2	3,692
3	Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 2003, 423, 762-769.	13.7	2,804
4	Impaired Multimerization of Human Adiponectin Mutants Associated with Diabetes. Journal of Biological Chemistry, 2003, 278, 40352-40363.	1.6	871
5	Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature, 2010, 464, 1313-1319.	13.7	859
6	Globular Adiponectin Protected ob/ob Mice from Diabetes and ApoE-deficient Mice from Atherosclerosis. Journal of Biological Chemistry, 2003, 278, 2461-2468.	1.6	783
7	The Mechanisms by Which Both Heterozygous Peroxisome Proliferator-activated Receptor γ (PPARγ) Deficiency and PPARγ Agonist Improve Insulin Resistance. Journal of Biological Chemistry, 2001, 276, 41245-41254.	1.6	575
8	NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nature Medicine, 2006, 12, 1048-1055.	15.2	278
9	Generation of Globular Fragment of Adiponectin by Leukocyte Elastase Secreted by Monocytic Cell Line THP-1. Endocrinology, 2005, 146, 790-796.	1.4	275
10	Endocrine Functions of Adipose Tissue. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 31-56.	9.6	253
11	Inhibition of RXR and PPARÎ ³ ameliorates diet-induced obesity and type 2 diabetes. Journal of Clinical Investigation, 2001, 108, 1001-1013.	3.9	251
12	The Small Molecule Harmine Is an Antidiabetic Cell-Type-Specific Regulator of PPARÎ ³ Expression. Cell Metabolism, 2007, 5, 357-370.	7.2	180
13	Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nature Genetics, 2002, 30, 221-226.	9.4	148
14	Selective purification and characterization of adiponectin multimer species from human plasma. Biochemical and Biophysical Research Communications, 2007, 356, 487-493.	1.0	129
15	TLE3 Is a Dual-Function Transcriptional Coregulator of Adipogenesis. Cell Metabolism, 2011, 13, 413-427.	7.2	119
16	The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in Adipogenesis. Molecular and Cellular Biology, 2018, 38, .	1.1	114
17	Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation. PLoS Genetics, 2011, 7, e1002311.	1.5	103
18	Constitutive Tyrosine Phosphorylation of ErbB-2 via Jak2 by Autocrine Secretion of Prolactin in Human Breast Cancer. Journal of Biological Chemistry, 2000, 275, 33937-33944.	1.6	78

HIRONORI WAKI

#	Article	IF	CITATIONS
19	The Small Molecule Phenamil Induces Osteoblast Differentiation and Mineralization. Molecular and Cellular Biology, 2009, 29, 3905-3914.	1.1	78
20	Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation. PLoS ONE, 2016, 11, e0162228.	1.1	76
21	NFIA co-localizes with PPARÎ ³ and transcriptionally controls the brown fat gene program. Nature Cell Biology, 2017, 19, 1081-1092.	4.6	73
22	Inhibitor of DNA Binding 2 Is a Small Molecule-Inducible Modulator of Peroxisome Proliferator-Activated Receptor-γ Expression and Adipocyte Differentiation. Molecular Endocrinology, 2008, 22, 2038-2048.	3.7	62
23	The Expression of GPIHBP1, an Endothelial Cell Binding Site for Lipoprotein Lipase and Chylomicrons, Is Induced by Peroxisome Proliferator-Activated Receptor-γ. Molecular Endocrinology, 2008, 22, 2496-2504.	3.7	51
24	The small molecule phenamil is a modulator of adipocyte differentiation and PPARÎ ³ expression. Journal of Lipid Research, 2010, 51, 2775-2784.	2.0	34
25	RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. Journal of Clinical Investigation, 2017, 127, 987-1004.	3.9	33
26	Echinomycin inhibits adipogenesis in 3T3-L1 cells in a HIF-independent manner. Scientific Reports, 2017, 7, 6516.	1.6	31
27	Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Research and Therapy, 2019, 10, 185.	2.4	28
28	The Epigenome and Its Role in Diabetes. Current Diabetes Reports, 2012, 12, 673-685.	1.7	24
29	Willingness of patients with diabetes to use an ICT-based self-management tool: a cross-sectional study. BMJ Open Diabetes Research and Care, 2017, 5, e000322.	1.2	23
30	NFIA differentially controls adipogenic and myogenic gene program through distinct pathways to ensure brown and beige adipocyte differentiation. PLoS Genetics, 2020, 16, e1009044.	1.5	20
31	STAMPing out Inflammation. Cell, 2007, 129, 451-452.	13.5	19
32	Determination of Endogenous Levels of Retinoic Acid Isomers in Type II Diabetes Mellitus Patients. Possible Correlation with HbA1c Values Biological and Pharmaceutical Bulletin, 2002, 25, 1268-1271.	0.6	16
33	Previous dropout from diabetic care as a predictor of patients' willingness to use mobile applications for selfâ€management: A crossâ€sectional study. Journal of Diabetes Investigation, 2017, 8, 542-549.	1.1	16
34	CDK5 Regulatory Subunit-Associated Protein 1-like 1 Negatively Regulates Adipocyte Differentiation through Activation of Wnt Signaling Pathway. Scientific Reports, 2017, 7, 7326.	1.6	12
35	Maturity-onset Diabetes of the Young Resulting from a Novel Mutation in the HNF-4.ALPHA. Gene Internal Medicine, 2002, 41, 848-852.	0.3	8
36	Diabetes care providers' manual for disaster diabetes care. Diabetology International, 2019, 10, 153-179.	0.7	6

HIRONORI WAKI

#	Article	IF	CITATIONS
37	Diabetes Care Providers' Manual for Disaster Diabetes Care. Journal of Diabetes Investigation, 2019, 10, 1118-1142.	1.1	5
38	Pseudoâ€hyperglucagonemia was observed in pancreatectomized patients when measured by glucagon sandwich enzymeâ€linked immunosorbent assay. Journal of Diabetes Investigation, 2021, 12, 286-289.	1.1	5
39	Clinical usefulness of multigene screening with phenotype-driven bioinformatics analysis for the diagnosis of patients with monogenic diabetes or severe insulin resistance. Diabetes Research and Clinical Practice, 2020, 169, 108461.	1.1	3
40	Chronic Intestinal Pseudo-obstruction with Mitochondrial Diseases. Internal Medicine, 2022, 61, 469-474.	0.3	3
41	Pick the best of both glucose and lipid metabolism. Journal of Diabetes Investigation, 2022, 13, 1132-1133.	1.1	2
42	NFIA determines the cis-effect of genetic variation on Ucp1 expression in murinethermogenic adipocytes. IScience, 2022, 25, 104729.	1.9	2
43	Bodyâ€weightâ€independent glucoseâ€lowering effect of the β3â€adrenergic receptor agonist mirabegron in humans. Journal of Diabetes Investigation, 2021, 12, 689-690.	1.1	1