Staffan Karlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4934497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Milligram to Kilogram Manufacture of AZD4573: Making It Possible by Application of Enzyme-, Iridium-, and Palladium-Catalyzed Key Transformations. Organic Process Research and Development, 2022, 26, 601-615.	2.7	6
2	Synthetic and Chromatographic Challenges and Strategies for Multigram Manufacture of KRAS ^{G12C} Inhibitors. Organic Process Research and Development, 2022, 26, 710-729.	2.7	12
3	Using Oxygen as the Primary Oxidant in a Continuous Process: Application to the Development of an Efficient Route to AZD4635. Organic Process Research and Development, 2022, 26, 1048-1053.	2.7	3
4	Using Spinchem Rotating Bed Reactor Technology for Immobilized Enzymatic Reactions: A Case Study. Organic Process Research and Development, 2019, 23, 1926-1931.	2.7	16
5	Synthetic Route Design of AZD4635, an A _{2A} R Antagonist. Organic Process Research and Development, 2019, 23, 1407-1419.	2.7	11
6	Novel Chemical Series of 5-Lipoxygenase-Activating Protein Inhibitors for Treatment of Coronary Artery Disease. Journal of Medicinal Chemistry, 2019, 62, 4325-4349.	6.4	8
7	Diastereoselective 1,4-Conjugate Addition of Alkyl Cuprates to Methyl Cyclopent-1-enecarboxylates. Organic Process Research and Development, 2018, 22, 337-343.	2.7	5
8	A Practical Telescoped Three-Step Sequence for the Preparation of (1 <i>R</i> ,2 <i>R</i>)-2-(4-Bromobenzoyl)cyclohexanecarboxylic Acid: A Key Building Block Used in One of Our Drug Development Projects. Organic Process Research and Development, 2018, 22, 618-624.	2.7	14
9	Route Optimization and Manufacture of Multihundred Grams of a Ghrelin Receptor Agonist. Organic Process Research and Development, 2018, 22, 1174-1187.	2.7	9
10	Development of a Safe Continuous Manufacturing Route to 2-(4-Isopropyl-1 <i>H</i> -1,2,3-triazol-1-yl)acetic Acid. Organic Process Research and Development, 2017, 21, 1668-1674.	2.7	7
11	Development of an Enantioselective Novozym 435 Mediated Acetylation for the Preparation of (1S,3R)-3-Acetamidocyclohexane-1-carboxylic Acid. Organic Process Research and Development, 2016, 20, 1336-1340.	2.7	5
12	An Enantioselective Hydrogenation of an Alkenoic Acid as a Key Step in the Synthesis of AZD2716. Organic Process Research and Development, 2016, 20, 262-269.	2.7	11
13	A Scalable Route to 5-Substituted 3-Isoxazolol Fibrinolysis Inhibitor AZD6564. Organic Process Research and Development, 2014, 18, 952-959.	2.7	21
14	Lipase Catalyzed Regioselective Lactamization as a Key Step in the Synthesis of <i>N</i> -Boc (2 <i>R</i>)-1,4-Oxazepane-2-Carboxylic Acid. Organic Process Research and Development, 2014, 18, 1116-1119.	2.7	8
15	A One-Pot Asymmetric Synthesis of a <i>N</i> -Acylated 4,5-Dihydropyrazole, A Key Intermediate of Thrombin Inhibitor AZD8165. Organic Process Research and Development, 2014, 18, 969-975.	2.7	15
16	Evaluation and Development of Practical Routes to an Enantiomerically Pure C2-Symmetric Diamine Building Block. Organic Process Research and Development, 2013, 17, 1552-1560.	2.7	16
17	Selection and Development of a Route for Cholesterol Absorption Inhibitor AZD4121. Organic Process Research and Development, 2012, 16, 586-594.	2.7	17
18	A mild hydrolysis of esters mediated by lithium salts. Tetrahedron Letters, 2007, 48, 2497-2499.	1.4	41