Nanna Bjarnholt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4933959/publications.pdf

Version: 2024-02-01

28 papers 2,092 citations

331670
21
h-index

477307 29 g-index

29 all docs 29 docs citations

29 times ranked 2790 citing authors

#	Article	IF	CITATIONS
1	Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Current Opinion in Plant Biology, 2005, 8, 280-291.	7.1	476
2	A Systems Biology Approach Identifies a R2R3 MYB Gene Subfamily with Distinct and Overlapping Functions in Regulation of Aliphatic Glucosinolates. PLoS ONE, 2007, 2, e1322.	2.5	321
3	Mass spectrometry imaging of plant metabolites – principles and possibilities. Natural Product Reports, 2014, 31, 818-837.	10.3	179
4	Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochemistry Reviews, 2006, 5, 309-329.	6.5	122
5	Phenolic cross-links: building and de-constructing the plant cell wall. Natural Product Reports, 2020, 37, 919-961.	10.3	111
6	A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal, 2015, 469, 375-389.	3.7	109
7	Diversification of an ancient theme: Hydroxynitrile glucosides. Phytochemistry, 2008, 69, 1507-1516.	2.9	64
8	Characterization of barley leaf tissue using direct and indirect desorption electrospray ionization imaging mass spectrometry. Journal of Mass Spectrometry, 2011, 46, 1241-1246.	1.6	64
9	Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. Plant Journal, 2013, 74, 1059-1071.	5.7	64
10	Bottom-Up Elucidation of Glycosidic Bond Stereochemistry. Analytical Chemistry, 2017, 89, 4540-4549.	6.5	64
11	The $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Glucosidases Responsible for Bioactivation of Hydroxynitrile Glucosides in $\langle i \rangle$ Lotus japonicus $\langle i \rangle$ Â. Plant Physiology, 2008, 147, 1072-1091.	4.8	60
12	Glutathione transferases catalyze recycling of autoâ€ŧoxic cyanogenic glucosides in sorghum. Plant Journal, 2018, 94, 1109-1125.	5.7	60
13	Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. BMC Genomics, 2016, 17, 1021.	2.8	56
14	Hydroxynitrile glucosides. Phytochemistry, 2008, 69, 1947-1961.	2.9	53
15	Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue type. Phytochemistry, 2011, 72, 2325-2334.	2.9	41
16	Metabolic consequences of knocking out <i>UGT85B1</i> , the gene encoding the glucosyltransferase required for synthesis of dhurrin in <i>Sorghum bicolor</i> (L. Moench). Plant and Cell Physiology, 2016, 57, 373-386.	3.1	34
17	Degradation of lignin βâ€aryl ether units in <i>Arabidopsis thaliana</i> expressing <i>LigD</i> , <i> LigF</i> and <i>LigG</i> from <i>Sphingomonas paucimobilis </i> Journal, 2017, 15, 581-593.	8.3	29
18	Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Metabolites during Sorghum Germination. Plant Physiology, 2020, 183, 925-942.	4.8	29

#	Article	IF	CITATIONS
19	Metabolism, excretion and avoidance of cyanogenic glucosides in insects with different feeding specialisations. Insect Biochemistry and Molecular Biology, 2015, 66, 119-128.	2.7	27
20	Leaching of cyanogenic glucosides and cyanide from white clover green manure. Chemosphere, 2008, 72, 897-904.	8.2	26
21	Glucosinolate-Related Glucosides in Alliaria petiolata: Sources of Variation in the Plant and Different Metabolism in an Adapted Specialist Herbivore, Pieris rapae. Journal of Chemical Ecology, 2014, 40, 1063-1079.	1.8	23
22	Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata. Frontiers in Plant Science, 2015, 6, 926.	3.6	23
23	Mineralization of benzyl glucosinolate and its hydrolysis product the biofumigant benzyl isothiocyanate in soil. Soil Biology and Biochemistry, 2008, 40, 135-141.	8.8	17
24	Occurrence of Sarmentosin and Other Hydroxynitrile Glucosides in Parnassius (Papilionidae) Butterflies and Their Food Plants. Journal of Chemical Ecology, 2012, 38, 525-537.	1.8	12
25	How Does Garlic Mustard Lure and Kill the West Virginia White Butterfly?. Journal of Chemical Ecology, 2015, 41, 948-955.	1.8	12
26	Dissipation of cyanogenic glucosides and cyanide in soil amended with white clover (Trifolium repens) Tj ETQq0	0 0 ₈ .gBT /	Overlock 10 T
27	HPLC method with on-line SPE preconcentration for quantification of permethric acid sorption to goethite. International Journal of Environmental Analytical Chemistry, 2004, 84, 303-314.	3.3	4
28	Shielding the oil reserves: the scutellum as a source of chemical defenses. Plant Physiology, 2022, 188, 1944-1949.	4.8	2