Luis Fernando Chaves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4933810/publications.pdf Version: 2024-02-01

	126708	114278
4,777	33	63
citations	h-index	g-index
133	133	4664
docs citations	times ranked	citing authors
	4,777 citations 133 docs citations	4,777 33 citations h-index 133 133 docs citations 133 times ranked

#	Article	IF	CITATIONS
1	Trade, uneven development and people in motion: Used territories and the initial spread of COVID-19 in Mesoamerica and the Caribbean. Socio-Economic Planning Sciences, 2022, 80, 101161.	2.5	7
2	Surveillance and genotype characterization of zoonotic trypanosomatidae in Didelphis marsupialis in two endemic sites of rural Panama. International Journal for Parasitology: Parasites and Wildlife, 2022, 17, 20-25.	0.6	2
3	OUP accepted manuscript. Environmental Entomology, 2022, , .	0.7	1
4	Anopheles albimanus (Diptera: Culicidae) Ensemble Distribution Modeling: Applications for Malaria Elimination. Insects, 2022, 13, 221.	1.0	11
5	Mapping Agricultural Lands: From Conventional to Regenerative. Land, 2022, 11, 437.	1.2	4
6	Land reversion and zoonotic spillover risk. Royal Society Open Science, 2022, 9, .	1.1	5
7	Housing quality improvement is associated with malaria transmission reduction in Costa Rica. Socio-Economic Planning Sciences, 2021, 74, 100951.	2.5	9
8	Modeling the association between Aedes aegypti ovitrap egg counts, multi-scale remotely sensed environmental data and arboviral cases at Puntarenas, Costa Rica (2017–2018). Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100014.	0.7	8
9	Diversity, Co-Occurrence, and Nestedness Patterns of Sand Fly Species (Diptera: Psychodidae) in Two Rural Areas of Western Panamá. Insects, 2021, 12, 113.	1.0	8
10	Aedes albopictus and Aedes flavopictus (Diptera: Culicidae) pre-imaginal abundance patterns are associated with different environmental factors along an altitudinal gradient. Current Research in Insect Science, 2021, 1, 100001.	0.8	11
11	The Eco-Bio-Social Factors That Modulate Aedes aegypti Abundance in South Texas Border Communities. Insects, 2021, 12, 183.	1.0	9
12	Variable coverage in an Autocidal Gravid Ovitrap intervention impacts efficacy of Aedes aegypti control. Journal of Applied Ecology, 2021, 58, 2075-2086.	1.9	8
13	Plasmodium vivax Genetic Diversity in Panama: Challenges for Malaria Elimination in Mesoamerica. Pathogens, 2021, 10, 989.	1.2	4
14	A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making. PLoS Neglected Tropical Diseases, 2021, 15, e0009653.	1.3	22
15	Clinical and Immunological Features of Human Leishmania (L.) infantum-Infection, Novel Insights Honduras, Central America. Pathogens, 2020, 9, 554.	1.2	8
16	Plasmodium falciparum Genetic Diversity in PanamÃ _i Based on glurp, msp-1 and msp-2 Genes: Implications for Malaria Elimination in Mesoamerica. Life, 2020, 10, 319.	1.1	6
17	Long-term transmission patterns and public health policies leading to malaria elimination in PanamÃ _i . Malaria Journal, 2020, 19, 265.	0.8	13
18	Malaria Elimination in Costa Rica: Changes in Treatment and Mass Drug Administration. Microorganisms, 2020, 8, 984.	1.6	15

#	Article	IF	CITATIONS
19	Health policy impacts on malaria transmission in Costa Rica. Parasitology, 2020, 147, 999-1007.	0.7	12
20	Synchrony of globally invasive Aedes spp. immature mosquitoes along an urban altitudinal gradient in their native range. Science of the Total Environment, 2020, 734, 139365.	3.9	12
21	COVID-19 basic reproduction number and assessment of initial suppression policies in Costa Rica. Mathematical Modelling of Natural Phenomena, 2020, 15, 32.	0.9	26
22	Trap Comparison for Surveillance of the Western Tree Hole Mosquito, Aedes sierrensis (Diptera:) Tj ETQq0 0 0 rg	;BT/Overl 0.6	ock ₂ 10 Tf 50 6
23	High Rate of Non-Human Feeding by Aedes aegypti Reduces Zika Virus Transmission in South Texas. Viruses, 2020, 12, 453.	1.5	23
24	Dispersal of female and male Aedes aegypti from discarded container habitats using a stable isotope mark-capture study design in South Texas. Scientific Reports, 2020, 10, 6803.	1.6	25
25	Malaria infection rates in Anopheles albimanus (Diptera: Culicidae) at IpetÃ-Guna, a village within a region targeted for malaria elimination in PanamÃį. Infection, Genetics and Evolution, 2019, 69, 216-223.	1.0	16
26	Parasite Removal for Malaria Elimination in Costa Rica. Trends in Parasitology, 2019, 35, 585-588.	1.5	9
27	The influence of weather and weather variability on mosquito abundance and infection with West Nile virus in Harris County, Texas, USA. Science of the Total Environment, 2019, 675, 260-272.	3.9	46
28	Landscape and Environmental Factors Influencing Stage Persistence and Abundance of the Bamboo Mosquito, Tripteroides bambusa (Diptera: Culicidae), across an Altitudinal Gradient. Insects, 2019, 10, 41.	1.0	4
29	Mosquito (Diptera: Culicidae) Species Composition in Ovitraps From a Mesoamerican Tropical Montane Cloud Forest. Journal of Medical Entomology, 2019, 56, 491-500.	0.9	5
30	From Surveillance To Control: Evaluation of A Larvicide Intervention Against Aedes aegypti In Brownsville, Texas. Journal of the American Mosquito Control Association, 2019, 35, 233-237.	0.2	6
31	Leishmania spp. Infection Rate and Feeding Patterns of Sand Flies (Diptera: Psychodidae) from a Hyperendemic Cutaneous Leishmaniasis Community in PanamÃ _i . American Journal of Tropical Medicine and Hygiene, 2019, 100, 798-807.	0.6	16
32	The Social Context of the Emergence of Vector-Borne Diseases. , 2018, , 1-15.		0
33	Modeling Vector-Borne Diseases in a Commoditized Landscape. , 2018, , 17-38.		Ο
34	Implications for Disease Intervention and Modeling. , 2018, , 51-62.		0
35	Clear-Cutting Disease Control. , 2018, , .		25
36	Mosquito Species (Diptera: Culicidae) Diversity from Ovitraps in a Mesoamerican Tropical Rainforest. Journal of Medical Entomology, 2018, 55, 646-653.	0.9	21

#	Article	IF	CITATIONS
37	Overwintering in the Bamboo Mosquito Tripteroides bambusa (Diptera: Culicidae) During a Warm, But Unpredictably Changing, Winter. Environmental Entomology, 2018, 47, 148-158.	0.7	9
38	Trypanosoma cruzi Infection in Rhodnius pallescens (Heteroptera: Reduviidae) Infesting Coyol Palms in the Dry Arch of Panamá. Journal of Medical Entomology, 2018, 55, 691-700.	0.9	7
39	Density Dependence, Landscape, and Weather Impacts on Aquatic Aedes japonicus japonicus (Diptera:) Tj ETQq1 329-341.	1 0.78431 0.9	4 rgBT /Ove 19
40	Climatic fluctuations and malaria transmission dynamics, prior to elimination, in Guna Yala, República de Panamá. Malaria Journal, 2018, 17, 85.	0.8	21
41	Population Dynamics of Anopheles albimanus (Diptera: Culicidae) at IpetÃ-Guna, a Village in a Region Targeted for Malaria Elimination in Panamá. Insects, 2018, 9, 164.	1.0	27
42	Assessing changing weather and the El Niño Southern Oscillation impacts on cattle rabies outbreaks and mortality in Costa Rica (1985–2016). BMC Veterinary Research, 2018, 14, 285.	0.7	11
43	Survival schedules and the estimation of the basic reproduction number (\$\${{varvec{R}}}_{0}\$\$ R 0) without the assumption of extreme cases. Ricerche Di Matematica, 2018, 67, 113-123.	0.6	1
44	Epidemiological Characteristics and Space-Time Analysis of the 2015 Dengue Outbreak in the Metropolitan Region of Tainan City, Taiwan. International Journal of Environmental Research and Public Health, 2018, 15, 396.	1.2	16
45	Increased Adult Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) Abundance in a Dengue Transmission Hotspot, Compared to a Coldspot, within Kaohsiung City, Taiwan. Insects, 2018, 9, 98.	1.0	25
46	Density dependence in a seasonal time series of the bamboo mosquito, <i>Tripteroides bambusa</i> (Diptera: Culicidae). Canadian Entomologist, 2017, 149, 338-344.	0.4	11
47	Reduced Leishmania (L.) infantum chagasi parasitic loads in humans exposed to Lutzomyia longipalpis bites in the Amazon region of Brazil. Parasitology Open, 2017, 3, .	0.9	1
48	Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PLoS ONE, 2017, 12, e0178698.	1.1	60
49	Enzootic mosquito vector species at equine encephalitis transmission foci in the República de Panamá. PLoS ONE, 2017, 12, e0185491.	1.1	20
50	Mosquito Species (Diptera: Culicidae) Persistence and Synchrony Across an Urban Altitudinal Gradient. Journal of Medical Entomology, 2016, 54, tjw184.	0.9	10
51	Trypanosoma cruzi and Trypanosoma rangeli co-infection patterns in insect vectors vary across habitat types in a fragmented forest landscape. Parasitology Open, 2016, 2, .	0.9	7
52	Globally invasive, withdrawing at home: Aedes albopictus and Aedes japonicus facing the rise of Aedes flavopictus. International Journal of Biometeorology, 2016, 60, 1727-1738.	1.3	32
53	Macroecological patterns of American Cutaneous Leishmaniasis transmission across the health areas of PanamÃi (1980–2012). Parasite Epidemiology and Control, 2016, 1, 42-55.	0.6	28
54	Predicting West Nile Virus Infection Risk From the Synergistic Effects of Rainfall and Temperature. Journal of Medical Entomology, 2016, 53, 935-944.	0.9	37

LUIS FERNANDO CHAVES

#	Article	IF	CITATIONS
55	Nestedness patterns of sand fly (Diptera: Psychodidae) species in a neotropical semi-arid environment. Acta Tropica, 2016, 153, 7-13.	0.9	16
56	Not going high? Climate change and the distribution of invasive <i>Aedes</i> mosquitoes across an altitudinal gradient in their native range. , 2016, , .		0
57	Population dynamics of <i>Armigeres subalbatus</i> (Diptera: Culicidae) across a temperate altitudinal gradient. Bulletin of Entomological Research, 2015, 105, 589-597.	0.5	29
58	Cutaneous Leishmaniasis in dogs: is high seroprevalence indicative of a reservoir role?. Parasitology, 2015, 142, 1202-1214.	0.7	23
59	Characterization of a recent malaria outbreak in the autonomous indigenous region of Guna Yala, Panama. Malaria Journal, 2015, 14, 459.	0.8	20
60	Risk factors associated with Trypanosoma cruziexposure in domestic dogs from a rural community in Panama. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 936-944.	0.8	26
61	Survey of Wild Mammal Hosts of Cutaneous Leishmaniasis Parasites in PanamÃ _i and Costa Rica. Tropical Medicine and Health, 2015, 43, 75-78.	1.0	21
62	New and Common Haplotypes Shape Genetic Diversity in Asian Tiger Mosquito Populations from Costa Rica and Panama. Journal of Economic Entomology, 2015, 108, 761-768.	0.8	26
63	Snakebites are associated with poverty, weather fluctuations, and El Niño. Science Advances, 2015, 1, e1500249.	4.7	74
64	Winter Activity and Diapause ofAedes albopictus(Diptera: Culicidae) in Hanoi, Northern Vietnam. Journal of Medical Entomology, 2015, 52, 1203-1212.	0.9	31
65	Mosquito Biodiversity Patterns Around Urban Environments in South-Central Okinawa Island, Japan. Journal of the American Mosquito Control Association, 2014, 30, 260-267.	0.2	27
66	When climate change couples social neglect: malaria dynamics in PanamÃį. Emerging Microbes and Infections, 2014, 3, 1-11.	3.0	24
67	Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Niño in PanamÃį. PLoS Neglected Tropical Diseases, 2014, 8, e3210.	1.3	49
68	<i>Uranotaenia novobscura ryukyuana</i> (Diptera: Culicidae) Population Dynamics Are Denso-Dependent and Autonomous From Weather Fluctuations. Annals of the Entomological Society of America, 2014, 107, 136-142.	1.3	23
69	Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 185-197.	0.7	142
70	Hot temperatures can force delayed mosquito outbreaks via sequential changes in Aedes aegypti demographic parameters in autocorrelated environments. Acta Tropica, 2014, 129, 15-24.	0.9	49
71	Push by a net, pull by a cow: can zooprophylaxis enhance the impact of insecticide treated bed nets on malaria control?. Parasites and Vectors, 2014, 7, 52.	1.0	62
72	Domestic dog health worsens with socio-economic deprivation of their home communities. Acta Tropica, 2014, 135, 67-74.	0.9	37

LUIS FERNANDO CHAVES

#	Article	IF	CITATIONS
73	Characteristic Age Distribution of Plasmodium vivax Infections after Malaria Elimination on Aneityum Island, Vanuatu. Infection and Immunity, 2014, 82, 243-252.	1.0	33
74	Climate Variability and Nonstationary Dynamics of Mycoplasma pneumoniae Pneumonia in Japan. PLoS ONE, 2014, 9, e95447.	1.1	8
75	Leishmaniasis sand fly vector density reduction is less marked in destitute housing after insecticide thermal fogging. Parasites and Vectors, 2013, 6, 164.	1.0	31
76	Clinical Cutaneous Leishmaniasis Rates Are Associated with Household Lutzomyia gomezi, Lu. Panamensis, and Lu. trapidoi Abundance in Trinidad de Las Minas, Western Panama. American Journal of Tropical Medicine and Hygiene, 2013, 88, 572-574.	0.6	25
77	A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of the Royal Society Interface, 2013, 10, 20120921.	1.5	306
78	Environmental Forcing Shapes Regional House Mosquito Synchrony in a Warming Temperate Island. Environmental Entomology, 2013, 42, 605-613.	0.7	16
79	When they don't bite, we smell money: understanding malaria bednet misuse. Parasitology, 2013, 140, 580-586.	0.7	26
80	A Differential Effect of Indian Ocean Dipole and El Niño on Cholera Dynamics in Bangladesh. PLoS ONE, 2013, 8, e60001.	1.1	23
81	Changes in Phlebotomine Sand Fly Species Composition Following Insecticide Thermal Fogging in a Rural Setting of Western PanamÃj. PLoS ONE, 2013, 8, e53289.	1.1	27
82	The Dynamics of Latifundia Formation. PLoS ONE, 2013, 8, e82863.	1.1	16
83	Seasonal Weather, Nutrients, and Conspecific Presence Impacts on the Southern House Mosquito Oviposition Dynamics in Combined Sewage Overflows. Journal of Medical Entomology, 2012, 49, 1328-1338.	0.9	33
84	Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes. PLoS Neglected Tropical Diseases, 2012, 6, e1884.	1.3	100
85	Indian Ocean Dipole and Rainfall Drive a Moran Effect in East Africa Malaria Transmission. Journal of Infectious Diseases, 2012, 205, 1885-1891.	1.9	43
86	Indian Ocean Dipole drives malaria resurgence in East African highlands. Scientific Reports, 2012, 2, 269.	1.6	59
87	Regime shifts and heterogeneous trends in malaria time series from Western Kenya Highlands. Parasitology, 2012, 139, 14-25.	0.7	38
88	Range prediction for the Giant Fruit-Eating Bat, <i>Artibeus amplus</i> (Phyllostomidae:) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf 0.5	50 142 Td (S
89	Nonlinear impacts of climatic variability on the densityâ€dependent regulation of an insect vector of disease. Global Change Biology, 2012, 18, 457-468.	4.2	84

⁹⁰Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector1.011290abundance and infection. Ecosphere, 2011, 2, art70.1.0112

Luis Fernando Chaves

#	Article	IF	CITATIONS
91	Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Memorias Do Instituto Oswaldo Cruz, 2011, 106, 479-494.	0.8	95
92	Fine-Scale Variation in Vector Host Use and Force of Infection Drive Localized Patterns of West Nile Virus Transmission. PLoS ONE, 2011, 6, e23767.	1.1	106
93	Combined sewage overflow accelerates immature development and increases body size in the urban mosquito Culex quinquefasciatus. Journal of Applied Entomology, 2011, 135, 611-620.	0.8	36
94	Spleen rates in children: an old and new surveillance tool for malaria elimination initiatives in island settings. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2011, 105, 226-231.	0.7	15
95	Weather variability impacts on oviposition dynamics of the southern house mosquito at intermediate time scales. Bulletin of Entomological Research, 2011, 101, 633-641.	0.5	41
96	Blood feeding patterns of mosquitoes: random or structured?. Frontiers in Zoology, 2010, 7, 3.	0.9	124
97	Ageâ€specific mortality analysis of the dry forest kissing bug, <i>Rhodnius neglectus</i> . Entomologia Experimentalis Et Applicata, 2010, 135, 252-262.	0.7	7
98	Unforeseen Costs of Cutting Mosquito Surveillance Budgets. PLoS Neglected Tropical Diseases, 2010, 4, e858.	1.3	72
99	An Entomologist Guide to Demystify Pseudoreplication: Data Analysis of Field Studies With Design Constraints. Journal of Medical Entomology, 2010, 47, 291-298.	0.9	85
100	Climate Change and Highland Malaria: Fresh Air for a Hot Debate. Quarterly Review of Biology, 2010, 85, 27-55.	0.0	170
101	Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasites and Vectors, 2010, 3, 19.	1.0	211
102	An Entomologist Guide to Demystify Pseudoreplication: Data Analysis of Field Studies With Design Constraints. Journal of Medical Entomology, 2010, 47, 291-298.	0.9	51
103	Ecological consequences of primary and secondary seed dispersal on seed and seedling fate of Dipteryx oleifera (Fabaceae). Revista De Biologia Tropical, 2010, 58, 991-1007.	0.1	7
104	Combined Sewage Overflow Enhances Oviposition of <i>Culex quinquefasciatus</i> (Diptera:) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 222
105	Climate and recruitment limitation of hosts: the dynamics of American cutaneous leishmaniasis seen through semi-mechanistic seasonal models. Annals of Tropical Medicine and Parasitology, 2009, 103, 221-234.	1.6	15
106	Random, top-down, or bottom-up coexistence of parasites: malaria population dynamics in multi-parasitic settings. Ecology, 2009, 90, 2414-2425.	1.5	13
107	Beneficial effect of spider presence on seedling recruitment of the tropical rainforest tree Dipteryx oleifera (Fabaceae). Revista De Biologia Tropical, 2009, 57, 837-46.	0.1	4
108	Malaria transmission pattern resilience to climatic variability is mediated by insecticide-treated nets. Malaria Journal, 2008, 7, 100.	0.8	30

Luis Fernando Chaves

#	Article	IF	CITATIONS
109	Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 123-132.	1.2	140
110	Social Exclusion Modifies Climate and Deforestation Impacts on a Vector-Borne Disease. PLoS Neglected Tropical Diseases, 2008, 2, e176.	1.3	108
111	Predicting endemic cholera: the role of climate variability and disease dynamics. Climate Research, 2008, 36, 131-140.	0.4	69
112	Morfotipos y Germinación de Semillas del Maitin,Ficus maitin(Moraceae). Biotropica, 2007, 39, 546-548.	0.8	2
113	Sources and sinks: revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trends in Parasitology, 2007, 23, 311-316.	1.5	66
114	Casas Muertas and Oficina No. 1: internal migrations and malaria trends in Venezuela 1905–1945. Parasitology Research, 2007, 101, 19-23.	0.6	6
115	Comparing Models for Early Warning Systems of Neglected Tropical Diseases. PLoS Neglected Tropical Diseases, 2007, 1, e33.	1.3	59
116	Spatial complexity and the fitness of the kissing bug, Rhodnius prolixus. Journal of Applied Entomology, 2006, 130, 51-55.	0.8	7
117	Climate Cycles and Forecasts of Cutaneous Leishmaniasis, a Nonstationary Vector-Borne Disease. PLoS Medicine, 2006, 3, e295.	3.9	170
118	Malaria resurgence in the East African highlands: Temperature trends revisited. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5829-5834.	3.3	361
119	Mortality profiles of Rhodnius prolixus (Heteroptera: Reduviidae), vector of Chagas disease. Acta Tropica, 2004, 92, 119-125.	0.9	22
120	Species co-occurrence and feeding behavior in sand fly transmission of American cutaneous leishmaniasis in western Venezuela. Acta Tropica, 2004, 92, 219-224.	0.9	39
121	Mathematical modelling of American Cutaneous Leishmaniasis: incidental hosts and threshold conditions for infection persistence. Acta Tropica, 2004, 92, 245-252.	0.9	56
122	Effects of blood ingestion on patterns on the chorion of eggs of Lutzomyia ovallesi (Diptera:) Tj ETQq0 0 0 rgBT	Overlock	10 ₂ Tf 50 222

123	COVID-19 and Circuits of Capital. Monthly Review, 0, , 1-15.	0.3	93
124	When might host heterogeneity drive the evolution of asymptomatic, pandemic coronaviruses?. Nonlinear Dynamics, 0, , .	2.7	1