
Susan Shore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4933454/publications.pdf Version: 2024-02-01

SUSAN SHOPE

#	Article	IF	CITATIONS
1	Ringing Ears: The Neuroscience of Tinnitus: Figure 1 Journal of Neuroscience, 2010, 30, 14972-14979.	3.6	508
2	Maladaptive plasticity in tinnitus — triggers, mechanisms and treatment. Nature Reviews Neurology, 2016, 12, 150-160.	10.1	317
3	Trigeminal ganglion innervates the auditory brainstem. , 2000, 419, 271-285.		178
4	Noise Overexposure Alters Long-Term Somatosensory-Auditory Processing in the Dorsal Cochlear Nucleus—Possible Basis for Tinnitus-Related Hyperactivity?. Journal of Neuroscience, 2012, 32, 1660-1671.	3.6	150
5	Neural mechanisms underlying somatic tinnitus. Progress in Brain Research, 2007, 166, 107-548.	1.4	136
6	Vessicular glutamate transporters 1 and 2 are differentially associated with auditory nerve and spinal trigeminal inputs to the cochlear nucleus. Journal of Comparative Neurology, 2007, 500, 777-787.	1.6	135
7	Projections from the trigeminal nuclear complex to the cochlear nuclei: A retrograde and anterograde tracing study in the guinea pig. Journal of Neuroscience Research, 2004, 78, 901-907.	2.9	124
8	Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Science Translational Medicine, 2018, 10, .	12.4	123
9	Convergence of spinal trigeminal and cochlear nucleus projections in the inferior colliculus of the guinea pig. Journal of Comparative Neurology, 2006, 495, 100-112.	1.6	105
10	Cochlear Damage Changes the Distribution of Vesicular Glutamate Transporters Associated with Auditory and Nonauditory Inputs to the Cochlear Nucleus. Journal of Neuroscience, 2009, 29, 4210-4217.	3.6	103
11	Increased Synchrony and Bursting of Dorsal Cochlear Nucleus Fusiform Cells Correlate with Tinnitus. Journal of Neuroscience, 2016, 36, 2068-2073.	3.6	101
12	Stimulus Timing-Dependent Plasticity in Dorsal Cochlear Nucleus Is Altered in Tinnitus. Journal of Neuroscience, 2013, 33, 19647-19656.	3.6	98
13	Connections between the cochlear nuclei in guinea pig. Hearing Research, 1992, 62, 16-26.	2.0	96
14	Mechanisms of Noise-Induced Tinnitus: Insights from Cellular Studies. Neuron, 2019, 103, 8-20.	8.1	92
15	Highâ€synchrony cochlear compound action potentials evoked by rising frequencyâ€swept tone bursts. Journal of the Acoustical Society of America, 1985, 78, 1286-1295.	1.1	91
16	Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs. Frontiers in Systems Neuroscience, 2012, 6, 42.	2.5	87
17	Somatosensory Projections to Cochlear Nucleus Are Upregulated after Unilateral Deafness. Journal of Neuroscience, 2012, 32, 15791-15801.	3.6	84
18	Tinnitus: Maladaptive auditory–somatosensory plasticity. Hearing Research, 2016, 334, 20-29.	2.0	82

SUSAN SHORE

#	Article	IF	CITATIONS
19	Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus. Journal of Neurophysiology, 2015, 114, 3064-3075.	1.8	51
20	Somatosensory inputs modify auditory spike timing in dorsal cochlear nucleus principal cells. European Journal of Neuroscience, 2011, 33, 409-420.	2.6	49
21	Stimulus-Timing Dependent Multisensory Plasticity in the Guinea Pig Dorsal Cochlear Nucleus. PLoS ONE, 2013, 8, e59828.	2.5	47
22	The impact of a low cost wheelchair on the quality of life of the disabled in the developing world. Medical Science Monitor, 2012, 18, CR533-CR542.	1.1	46
23	The effects of cochlear hypothermia on compound action potential tuning. Journal of the Acoustical Society of America, 1985, 77, 590-598.	1.1	38
24	Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs. Hippocampus, 2019, 29, 669-682.	1.9	36
25	Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus. Neuroscience, 2016, 332, 242-257.	2.3	35
26	Glutamatergic Projections to the Cochlear Nucleus are Redistributed in Tinnitus. Neuroscience, 2018, 391, 91-103.	2.3	29
27	Unit responses in ventral cochlear nucleus reflect cochlear coding of rapid frequency sweeps. Journal of the Acoustical Society of America, 1987, 82, 471-478.	1.1	27
28	Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus. Journal of Neurophysiology, 2017, 117, 1229-1238.	1.8	24
29	Influence of centrifugal pathways on forward masking of ventral cochlear nucleus neurons. Journal of the Acoustical Society of America, 1998, 104, 378-389.	1.1	19
30	Transcutaneous induction of stimulus-timing-dependent plasticity in dorsal cochlear nucleus. Frontiers in Systems Neuroscience, 2015, 9, 116.	2.5	19
31	Multisensory Integration Enhances Temporal Coding in Ventral Cochlear Nucleus Bushy Cells. Journal of Neuroscience, 2018, 38, 2832-2843.	3.6	17
32	Stimulus-timing-dependent modifications of rate-level functions in animals with and without tinnitus. Journal of Neurophysiology, 2015, 113, 956-970.	1.8	16
33	The long-term impact of wheelchair delivery on the lives of people with disabilities in three countries of the world. African Journal of Disability, 2017, 6, 344.	1.6	16
34	Dorsal Cochlear Nucleus Fusiform-cell Plasticity is Altered in Salicylate-induced Tinnitus. Neuroscience, 2019, 407, 170-181.	2.3	16
35	NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus. Frontiers in Neural Circuits, 2015, 9, 75.	2.8	14
36	Multisensory activation of ventral cochlear nucleus Dâ€stellate cells modulates dorsal cochlear nucleus principal cell spatial coding. Journal of Physiology, 2018, 596, 4537-4548.	2.9	12

SUSAN SHORE

#	Article	IF	CITATIONS
37	Olivocochlear projections contribute to superior intensity coding in cochlear nucleus small cells. Journal of Physiology, 2022, 600, 61-73.	2.9	11
38	Ventral cochlear nucleus bushy cells encode hyperacusis in guinea pigs. Scientific Reports, 2020, 10, 20594.	3.3	10
39	Noise Exposure Alters Clutamatergic and GABAergic Synaptic Connectivity in the Hippocampus and Its Relevance to Tinnitus. Neural Plasticity, 2021, 2021, 1-16.	2.2	10
40	Disruption of lateral olivocochlear neurons with a dopaminergic neurotoxin depresses spontaneous auditory nerve activity. Neuroscience Letters, 2014, 582, 54-58.	2.1	9
41	Bimodal Auditory Electrical Stimulation for the Treatment of Tinnitus: Preclinical and Clinical Studies. Current Topics in Behavioral Neurosciences, 2020, 51, 295-323.	1.7	6
42	Audiotactile interactions in the mouse cochlear nucleus. Scientific Reports, 2021, 11, 6887.	3.3	4
43	Inhibitory interneurons in a brainstem circuit adjust their inhibitory motifs to process multimodal input. Journal of Physiology, 2021, 599, 631-645.	2.9	2
44	Emerging Topics in the Behavioral Neuroscience of Tinnitus. Current Topics in Behavioral Neurosciences, 2021, 51, 461-483.	1.7	2
45	Multimodal Inputs to the Cochlear Nucleus and their Role in the Generation of Tinnitus. , 0, , 223-244.		0