List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4933012/publications.pdf Version: 2024-02-01

FIMAD WOLF

#	Article	IF	CITATIONS
1	GraFix: sample preparation for single-particle electron cryomicroscopy. Nature Methods, 2008, 5, 53-55.	9.0	476
2	Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature, 2014, 511, 483-487.	13.7	392
3	Target gene-independent functions of MYC oncoproteins. Nature Reviews Molecular Cell Biology, 2020, 21, 255-267.	16.1	181
4	Semiquantitative Proteomic Analysis of the Human Spliceosome via a Novel Two-Dimensional Gel Electrophoresis Method. Molecular and Cellular Biology, 2011, 31, 2667-2682.	1.1	168
5	Conservation of the Protein Composition and Electron Microscopy Structure of <i>Drosophila melanogaster</i> and Human Spliceosomal Complexes. Molecular and Cellular Biology, 2009, 29, 281-301.	1.1	155
6	Snf1-RELATED KINASE1-Controlled C/S ₁ -bZIP Signaling Activates Alternative Mitochondrial Metabolic Pathways to Ensure Plant Survival in Extended Darkness. Plant Cell, 2018, 30, 495-509.	3.1	142
7	Different promoter affinities account for specificity in MYC-dependent gene regulation. ELife, 2016, 5, .	2.8	127
8	Molecular Architecture of the Human Prp19/CDC5L Complex. Molecular and Cellular Biology, 2010, 30, 2105-2119.	1.1	120
9	Taming of the beast: shaping Myc-dependent amplification. Trends in Cell Biology, 2015, 25, 241-248.	3.6	119
10	Inflammation-Induced NFATc1–STAT3 Transcription Complex Promotes Pancreatic Cancer Initiation by <i>Kras</i> G12D. Cancer Discovery, 2014, 4, 688-701.	7.7	108
11	MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation. Molecular Cell, 2019, 74, 674-687.e11.	4.5	89
12	Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation. Molecular Cell, 2016, 61, 54-67.	4.5	86
13	The Role of MIZ-1 in MYC-Dependent Tumorigenesis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014290-a014290.	2.9	76
14	Dual Regulation of Fbw7 Function and Oncogenic Transformation by Usp28. Cell Reports, 2014, 9, 1099-1109.	2.9	76
15	Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase. Nature, 2019, 567, 545-549.	13.7	76
16	OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene, 2017, 36, 1911-1924.	2.6	73
17	PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nature Chemical Biology, 2020, 16, 1179-1188.	3.9	73
18	Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle. Cell Reports, 2017, 21, 3483-3497.	2.9	71

#	Article	IF	CITATIONS
19	MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat. Nature Communications, 2019, 10, 3623.	5.8	71
20	Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP by electron microscopy. Nature Structural and Molecular Biology, 2008, 15, 1206-1212.	3.6	68
21	Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors. PLoS Genetics, 2012, 8, e1002728.	1.5	66
22	A MYC–GCN2–eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nature Cell Biology, 2019, 21, 1413-1424.	4.6	65
23	BIM Is the Primary Mediator of MYC-Induced Apoptosis in Multiple Solid Tissues. Cell Reports, 2014, 8, 1347-1353.	2.9	64
24	The Interaction of Myc with Miz1 Defines Medulloblastoma Subgroup Identity. Cancer Cell, 2016, 29, 5-16.	7.7	63
25	The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nature Immunology, 2016, 17, 1312-1321.	7.0	62
26	The <i>MYC</i> mRNA 3′â€UTR couples RNA polymerase II function to glutamine and ribonucleotide levels. EMBO Journal, 2017, 36, 1854-1868.	3.5	60
27	Single Particle Reconstructions of the Transferrin–Transferrin Receptor Complex Obtained with Different Specimen Preparation Techniques. Journal of Molecular Biology, 2006, 355, 1048-1065.	2.0	57
28	MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nature Communications, 2019, 10, 3485.	5.8	54
29	The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression. Oncogene, 2020, 39, 6841-6855.	2.6	53
30	Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. Cell Host and Microbe, 2021, 29, 299-310.e7.	5.1	48
31	Exon, intron and splice site locations in the spliceosomal B complex. EMBO Journal, 2009, 28, 2283-2292.	3.5	46
32	Miz1 is required to maintain autophagic flux. Nature Communications, 2013, 4, 2535.	5.8	46
33	snoRNAs are a novel class of biologically relevant Myc targets. BMC Biology, 2015, 13, 25.	1.7	45
34	The Myb-MuvB Complex Is Required for YAP-Dependent Transcription of Mitotic Genes. Cell Reports, 2019, 27, 3533-3546.e7.	2.9	45
35	3D Cryo-EM Structure of an Active Step I Spliceosome and Localization of Its Catalytic Core. Molecular Cell, 2010, 40, 927-938.	4.5	43
36	Myc coordinates transcription and translation to enhance transformation and suppress invasiveness. EMBO Reports, 2015, 16, 1723-1736.	2.0	42

#	Article	IF	CITATIONS
37	Targeting MYC Proteins for Tumor Therapy. Annual Review of Cancer Biology, 2020, 4, 61-75.	2.3	42
38	LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation. Rna, 2015, 21, 1294-1305.	1.6	41
39	Targeting bromodomain-containing protein 4 (BRD4) inhibits MYC expression in colorectal cancer cells. Neoplasia, 2019, 21, 1110-1120.	2.3	40
40	Design, Synthesis, and Evaluation of WD-Repeat-Containing Protein 5 (WDR5) Degraders. Journal of Medicinal Chemistry, 2021, 64, 10682-10710.	2.9	38
41	Targeted protein degradation reveals a direct role of SPT6 in RNAPII elongation and termination. Molecular Cell, 2021, 81, 3110-3127.e14.	4.5	38
42	Localized Inhibition of Protein Phosphatase 1 by NUAK1 Promotes Spliceosome Activity and Reveals a MYC-Sensitive Feedback Control of Transcription. Molecular Cell, 2020, 77, 1322-1339.e11.	4.5	34
43	Repression of <scp>SRF</scp> target genes is critical for <scp>M</scp> ycâ€dependent apoptosis of epithelial cells. EMBO Journal, 2015, 34, 1554-1571.	3.5	30
44	Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis. Nature Microbiology, 2020, 5, 1390-1402.	5.9	29
45	Ubiquitylation of MYC couples transcription elongation with double-strand break repair at active promoters. Molecular Cell, 2021, 81, 830-844.e13.	4.5	28
46	PAF1 complex component Leo1 helps recruit <i>Drosophila</i> Myc to promoters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9224-E9232.	3.3	27
47	Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 641618.	1.8	25
48	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.4	25
49	Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2015, 79, 79-88.	0.9	23
50	Deletion of Gas2l3 in mice leads to specific defects in cardiomyocyte cytokinesis during development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8029-8034.	3.3	22
51	MYCN recruits the nuclear exosome complex to RNA polymerase II to prevent transcription-replication conflicts. Molecular Cell, 2022, 82, 159-176.e12.	4.5	22
52	Genetic alterations of the SUMO isopeptidase SENP6 drive lymphomagenesis and genetic instability in diffuse large B-cell lymphoma. Nature Communications, 2022, 13, 281.	5.8	18
53	Miz1 Is a Critical Repressor of cdkn1a during Skin Tumorigenesis. PLoS ONE, 2012, 7, e34885.	1.1	15
54	MYC- and MIZ1-Dependent Vesicular Transport of Double-Strand RNA Controls Immune Evasion in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2021, 81, 4242-4256.	0.4	15

#	Article	IF	CITATIONS
55	NOXA expression drives synthetic lethality to RUNX1 inhibition in pancreatic cancer. Proceedings of the United States of America, 2022, 119, .	3.3	14
56	Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma. Cancer Immunology Research, 2022, 10, 482-497.	1.6	9
57	Novel, highly potent PROTACs targeting AURORA-A kinase. Current Research in Chemical Biology, 2022, 2, 100032.	1.4	9
58	MondoA drives malignancy in B-ALL through enhanced adaptation to metabolic stress. Blood, 2022, 139, 1184-1197.	0.6	7
59	Antisense-targeted immuno-EM localization of the pre-mRNA path in the spliceosomal C complex. Rna, 2012, 18, 1347-1357.	1.6	6
60	Miz1 Deficiency in the Mammary Gland Causes a Lactation Defect by Attenuated Stat5 Expression and Phosphorylation. PLoS ONE, 2014, 9, e89187.	1.1	6
61	Generation of auxin inducible degron (AID) knock-in cell lines for targeted protein degradation in mammalian cells. STAR Protocols, 2021, 2, 100949.	0.5	4
62	<scp>RNA</scp> polymerase I inhibition induces terminal differentiation, growth arrest, and vulnerability to senolytics in colorectal cancer cells. Molecular Oncology, 2022, 16, 2788-2809.	2.1	0