Jakub Rafl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/49330/publications.pdf

Version: 2024-02-01

		2258059	1872680
12	29	3	6
papers	citations	h-index	g-index
13	13	13	29
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tidal volume significantly affects oxygenation in healthy pigs during high-frequency oscillatory ventilation compared to conventional ventilation. BioMedical Engineering OnLine, 2022, 21, 14.	2.7	2
2	Statistical Description of SaO2–SpO2 Relationship for Model of Oxygenation in Premature Infants. Electronics (Switzerland), 2022, 11, 1314.	3.1	0
3	In Vitro Estimation of Relative Compliance during High-Frequency Oscillatory Ventilation. Applied Sciences (Switzerland), 2021, 11, 899.	2.5	1
4	Assessment of Respiratory System Resistance during High-Frequency Oscillatory Ventilation Based on In Vitro Experiment. Applied Sciences (Switzerland), 2021, 11, 11279.	2.5	0
5	Dependence of SpO2 signal noise on the pulse oximeter averaging time. Current Directions in Biomedical Engineering, 2021, 7, 351-354.	0.4	0
6	Sensitivity analysis of a computer model of neonatal oxygen transport. Current Directions in Biomedical Engineering, 2020, 6, 99-102.	0.4	0
7	Model of SpO2 signal of the neonate. Current Directions in Biomedical Engineering, 2019, 5, 549-552.	0.4	1
8	Computer model of oxygenation in neonates. Current Directions in Biomedical Engineering, 2019, 5, 73-76.	0.4	1
9	Response time of indirectly accessed gas exchange depends on measurement method. Biomedizinische Technik, 2018, 63, 647-655.	0.8	6
10	Models of PaO ₂ response to the continuous distending pressure maneuver during high frequency oscillatory ventilation in healthy and ARDS lung model pigs. Experimental Lung Research, 2016, 42, 87-94.	1.2	6
11	Models of a PaO2 Course during a Stepwise Change of Continuous Distending Pressure in HFOV. , 2015,		0
12	Design and Control of a Demand Flow System Assuring Spontaneous Breathing of a Patient Connected to an HFO Ventilator. IEEE Transactions on Biomedical Engineering, 2011, 58, 3225-3233.	4.2	11