Laura F Silvian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4932965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of small-molecule positive allosteric modulators of Parkin E3 ligase. IScience, 2022, 25, 103650.	4.1	11
2	Optimization of novel reversible Bruton's tyrosine kinase inhibitors identified using Tethering-fragment-based screens. Bioorganic and Medicinal Chemistry, 2019, 27, 2905-2913.	3.0	14
3	Germinalâ€center kinaseâ€like kinase coâ€crystal structure reveals a swapped activation loop and Câ€terminal extension. Protein Science, 2017, 26, 152-162.	7.6	16
4	ATP-Competitive MLKL Binders Have No Functional Impact on Necroptosis. PLoS ONE, 2016, 11, e0165983.	2.5	26
5	Discovery of biaryls as RORÎ ³ inverse agonists by using structure-based design. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2459-2463.	2.2	19
6	Structural determinant for inducing RORgamma specific inverse agonism triggered by a synthetic benzoxazinone ligand. BMC Structural Biology, 2016, 16, 7.	2.3	27
7	Discovery of biaryl carboxylamides as potent RORÎ ³ inverse agonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2991-2997.	2.2	32
8	Structure-based design of low-nanomolar PIM kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 474-480.	2.2	21
9	Inhibitors of protein–protein interactions: New methodologies to tackle this challenge. Drug Discovery Today: Technologies, 2013, 10, e509-e515.	4.0	20
10	Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorganic and Medicinal Chemistry, 2013, 21, 4011-4019.	3.0	205
11	Synthesis, SAR and biological evaluation of 1,6-disubstituted-1H-pyrazolo[3,4-d]pyrimidines as dual inhibitors of Aurora kinases and CDK1. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2070-2074.	2.2	31
12	Structure-based design of 2,6,7-trisubstituted-7H-pyrrolo[2,3-d]pyrimidines as Aurora kinases inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4033-4037.	2.2	25
13	Small Molecule Inhibition of the TNF Family Cytokine CD40 Ligand through a Subunit Fracture Mechanism. ACS Chemical Biology, 2011, 6, 636-647.	3.4	48
14	Correction to Small Molecule Inhibition of the TNF Family Cytokine CD40 Ligand through a Subunit Fracture Mechanism. ACS Chemical Biology, 2011, 6, 761-761.	3.4	1
15	Design, synthesis, and biological evaluation of pyrazolopyrimidine-sulfonamides as potent multiple-mitotic kinase (MMK) inhibitors (part I). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5633-5637.	2.2	10
16	Discovery of a potent and highly selective PDK1 inhibitor via fragment-based drug discovery. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3078-3083.	2.2	78
17	Resolution of disulfide heterogeneity in Nogo receptor 1 fusion proteins by molecular engineering. Biotechnology and Applied Biochemistry, 2010, 57, 31-45.	3.1	9
18	Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Science, 2010, 19, 429-439.	7.6	120

LAURA F SILVIAN

#	Article	IF	CITATIONS
19	Improving the solubility of antiâ€LINGOâ€1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis. Protein Science, 2010, 19, 954-966.	7.6	96
20	Design and synthesis of a series of meta aniline-based LFA-1 ICAM inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5249-5251.	2.2	21
21	Structure–activity relationship of ortho- and meta-phenol based LFA-1 ICAM inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5245-5248.	2.2	8
22	Structure of a NEMO/IKK-Associating Domain Reveals Architecture of the Interaction Site. Structure, 2008, 16, 798-808.	3.3	119
23	Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding. Biochemistry, 2006, 45, 6801-6812.	2.5	40
24	Formation of Virus-like Clusters Is an Intrinsic Property of the Tumor Necrosis Factor Family Member BAFF (B Cell Activating Factor). Biochemistry, 2006, 45, 2006-2013.	2.5	64
25	New Approaches for the Treatment of Pain: The GDNF Family of Neurotrophic Growth Factors. Current Topics in Medicinal Chemistry, 2005, 5, 577-583.	2.1	36
26	Disulfide Structure of the Leucine-Rich Repeat C-Terminal Cap and C-Terminal Stalk Region of Nogo-66 Receptor. Biochemistry, 2005, 44, 16491-16501.	2.5	18
27	A Neutralizing Anti-Nogo66 Receptor Monoclonal Antibody Reverses Inhibition of Neurite Outgrowth by Central Nervous System Myelin. Journal of Biological Chemistry, 2004, 279, 43780-43788.	3.4	56
28	Agonist-Induced Transitions of the Acetylcholine Receptor. Annals of the New York Academy of Sciences, 2003, 998, 101-113.	3.8	4
29	The anatomy of infidelity. , 2001, 8, 827-828.		10
30	Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nature Structural Biology, 2001, 8, 984-989.	9.7	165
31	Distance between alpha-Cys 192 of the Acetylcholine Receptor and Rhodamine-labeled alpha-Bungarotoxin Complexed to the Receptor. Annals of the New York Academy of Sciences, 1998, 841, 104-107.	3.8	1
32	PINK1/Parkin Pathway Activation for Mitochondrial Quality Control – Which Is the Best Molecular Target for Therapy?. Frontiers in Aging Neuroscience, 0, 14, .	3.4	14