
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493290/publications.pdf Version: 2024-02-01

STEEAN KUNZ

#	Article	IF	CITATIONS
1	Lausannevirus bilevel set-points. New Microbes and New Infections, 2022, 46, 100966.	0.8	Ο
2	The Protein Kinase Receptor Modulates the Innate Immune Response against Tacaribe Virus. Viruses, 2021, 13, 1313.	1.5	5
3	Structural Basis for a Neutralizing Antibody Response Elicited by a Recombinant Hantaan Virus Gn Immunogen. MBio, 2021, 12, e0253120.	1.8	13
4	Characterization of RNA Sensing Pathways in Hepatoma Cell Lines and Primary Human Hepatocytes. Cells, 2021, 10, 3019.	1.8	10
5	The Role of Receptor Tyrosine Kinases in Lassa Virus Cell Entry. Viruses, 2020, 12, 857.	1.5	10
6	Molecular evolution of the proopiomelanocortin system in Barn owl species. PLoS ONE, 2020, 15, e0231163.	1.1	3
7	A proopiomelanocortinâ€derived peptide sequence enhances plasma stability of peptide drugs. FEBS Letters, 2020, 594, 2840-2866.	1.3	4
8	A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. PLoS Neglected Tropical Diseases, 2020, 14, e0009004.	1.3	4
9	A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. , 2020, 14, e0009004.		Ο
10	A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. , 2020, 14, e0009004.		0
11	A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. , 2020, 14, e0009004.		Ο
12	A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. , 2020, 14, e0009004.		0
13	A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. , 2020, 14, e0009004.		0
14	A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. , 2020, 14, e0009004.		0
15	A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. , 2020, 14, e0009004.		0
16	A novel cellâ€based sensor detecting the activity of individual basic proprotein convertases. FEBS Journal, 2019, 286, 4597-4620.	2.2	4
17	Comparison of the Innate Immune Responses to Pathogenic and Nonpathogenic Clade B New World Arenaviruses. Journal of Virology, 2019, 93, .	1.5	18
18	Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus. MBio, 2019, 10, .	1.8	10

#	Article	IF	CITATIONS
19	Macropinocytosis contributes to hantavirus entry into human airway epithelial cells. Virology, 2019, 531, 57-68.	1.1	27
20	Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. Journal of Virology, 2019, 93, .	1.5	43
21	Axl Can Serve as Entry Factor for Lassa Virus Depending on the Functional Glycosylation of Dystroglycan. Journal of Virology, 2018, 92, .	1.5	56
22	Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses. Journal of Molecular Biology, 2018, 430, 1839-1852.	2.0	25
23	Studies of Lassa Virus Cell Entry. Methods in Molecular Biology, 2018, 1604, 135-155.	0.4	5
24	Cleavage of the Glycoprotein of Arenaviruses. , 2018, , 47-70.		2
25	Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction. Journal of Virology, 2017, 91, .	1.5	23
26	Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein. Virology, 2017, 512, 161-171.	1.1	19
27	Breaking the Barrier: Host Cell Invasion by Lujo Virus. Cell Host and Microbe, 2017, 22, 583-585.	5.1	8
28	Conserved Endonuclease Function of Hantavirus L Polymerase. Viruses, 2016, 8, 108.	1.5	11
29	Lassa Virus Cell Entry via Dystroglycan Involves an Unusual Pathway of Macropinocytosis. Journal of Virology, 2016, 90, 6412-6429.	1.5	77
30	Mechanism of Folding and Activation of Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P). Journal of Biological Chemistry, 2016, 291, 2055-2066.	1.6	13
31	Novel drug discovery approaches for treating arenavirus infections. Expert Opinion on Drug Discovery, 2016, 11, 383-393.	2.5	13
32	A Molecular Sensor To Characterize Arenavirus Envelope Glycoprotein Cleavage by Subtilisin Kexin Isozyme 1/Site 1 Protease. Journal of Virology, 2016, 90, 705-714.	1.5	11
33	Lymphocytic Choriomeningitis Virus Differentially Affects the Virus-Induced Type I Interferon Response and Mitochondrial Apoptosis Mediated by RIG-I/MAVS. Journal of Virology, 2015, 89, 6240-6250.	1.5	29
34	Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease. Journal of Biological Chemistry, 2014, 289, 35743-35756.	1.6	18
35	The role of proteolytic processing and the stable signal peptide in expression of the Old World arenavirus envelope glycoprotein ectodomain. Virology, 2013, 436, 127-133.	1.1	21
36	Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan. Cellular Microbiology, 2013, 15, 689-700.	1.1	28

#	Article	IF	CITATIONS
37	Viral envelope glycoprotein processing by proprotein convertases. Antiviral Research, 2013, 99, 49-60.	1.9	22
38	Differential Recognition of Old World and New World Arenavirus Envelope Glycoproteins by Subtilisin Kexin Isozyme 1 (SKI-1)/Site 1 Protease (S1P). Journal of Virology, 2013, 87, 6406-6414.	1.5	18
39	Role of DC-SIGN in Lassa Virus Entry into Human Dendritic Cells. Journal of Virology, 2013, 87, 11504-11515.	1.5	67
40	Envelope Glycoprotein of Arenaviruses. Viruses, 2012, 4, 2162-2181.	1.5	82
41	Arenavirus Nucleoproteins Prevent Activation of Nuclear Factor Kappa B. Journal of Virology, 2012, 86, 8185-8197.	1.5	84
42	Arenavirus Nucleoprotein Targets Interferon Regulatory Factor-Activating Kinase IKKε. Journal of Virology, 2012, 86, 7728-7738.	1.5	129
43	Molecular Characterization of the Processing of Arenavirus Envelope Glycoprotein Precursors by Subtilisin Kexin Isozyme-1/Site-1 Protease. Journal of Virology, 2012, 86, 4935-4946.	1.5	34
44	Current drug discovery strategies against arenavirus infections. Expert Review of Anti-Infective Therapy, 2012, 10, 1297-1309.	2.0	6
45	Plasmacytoid Dendritic Cells Are Productively Infected and Activated through TLR-7 Early after Arenavirus Infection. Cell Host and Microbe, 2012, 11, 617-630.	5.1	67
46	Evaluation of the anti-arenaviral activity of the subtilisin kexin isozyme-1/site-1 protease inhibitor PF-429242. Virology, 2012, 423, 14-22.	1.1	48
47	Binding of Lassa virus perturbs extracellular matrix-induced signal transduction via dystroglycan. Cellular Microbiology, 2012, 14, 1122-1134.	1.1	30
48	Pathogenesis of arenavirus hemorrhagic fevers. Expert Review of Anti-Infective Therapy, 2011, 9, 49-59.	2.0	73
49	Hypomorphic Mutation in the Site-1 Protease Mbtps1 Endows Resistance to Persistent Viral Infection in a Cell-Specific Manner. Cell Host and Microbe, 2011, 9, 212-222.	5.1	20
50	Novel approaches in anti-arenaviral drug development. Virology, 2011, 411, 163-169.	1.1	30
51	Arenavirus envelope glycoproteins mimic autoprocessing sites of the cellular proprotein convertase subtilisin kexin isozyme-1/site-1 protease. Virology, 2011, 417, 18-26.	1.1	23
52	Altering α-dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism. Genetic Vaccines and Therapy, 2011, 9, 8.	1.5	17
53	Antiviral Activity of a Small-Molecule Inhibitor of Arenavirus Glycoprotein Processing by the Cellular Site 1 Protease. Journal of Virology, 2011, 85, 795-803.	1.5	73
54	Role of the Host Cell's Unfolded Protein Response in Arenavirus Infection. Journal of Virology, 2011, 85, 1662-1670.	1.5	40

#	Article	IF	CITATIONS
55	Old World Arenaviruses Enter the Host Cell via the Multivesicular Body and Depend on the Endosomal Sorting Complex Required for Transport. PLoS Pathogens, 2011, 7, e1002232.	2.1	128
56	Targeting the Proteolytic Processing of the Viral Glycoprotein Precursor Is a Promising Novel Antiviral Strategy against Arenaviruses. Journal of Virology, 2010, 84, 573-584.	1.5	52
57	Functional Glycosylation of Dystroglycan Is Crucial for Thymocyte Development in the Mouse. PLoS ONE, 2010, 5, e9915.	1.1	8
58	Receptor binding and cell entry of Old World arenaviruses reveal novel aspects of virus–host interaction. Virology, 2009, 387, 245-249.	1.1	49
59	Characterization of lassa virus cell entry inhibitors: Determination of the active enantiomer by asymmetric synthesis. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3771-3774.	1.0	23
60	The role of the vascular endothelium in arenavirus haemorrhagic fevers. Thrombosis and Haemostasis, 2009, 102, 1024-1029.	1.8	38
61	Inhibition of cellular entry of lymphocytic choriomeningitis virus by amphipathic DNA polymers. Virology, 2008, 372, 107-117.	1.1	41
62	Unique Small Molecule Entry Inhibitors of Hemorrhagic Fever Arenaviruses. Journal of Biological Chemistry, 2008, 283, 18734-18742.	1.6	86
63	Cellular Entry of Lymphocytic Choriomeningitis Virus. Journal of Virology, 2008, 82, 1505-1517.	1.5	87
64	Site 1 Protease Is Required for Proteolytic Processing of the Glycoproteins of the South American Hemorrhagic Fever Viruses Junin, Machupo, and Guanarito. Journal of Virology, 2008, 82, 6045-6051.	1.5	76
65	Different Mechanisms of Cell Entry by Human-Pathogenic Old World and New World Arenaviruses. Journal of Virology, 2008, 82, 7677-7687.	1.5	122
66	Old World and Clade C New World Arenaviruses Mimic the Molecular Mechanism of Receptor Recognition Used by α-Dystroglycan's Host-Derived Ligands. Journal of Virology, 2007, 81, 5685-5695.	1.5	66
67	Old World Arenavirus Infection Interferes with the Expression of Functional α-Dystroglycan in the Host Cell. Molecular Biology of the Cell, 2007, 18, 4493-4507.	0.9	47
68	Arenavirus Z-Glycoprotein Association Requires Z Myristoylation but Not Functional RING or Late Domains. Journal of Virology, 2007, 81, 9451-9460.	1.5	94
69	Characterization of the cellular receptors for the South American hemorrhagic fever viruses Junin, Guanarito, and Machupo. Virology, 2006, 349, 476-491.	1.1	42
70	Novel Antiviral Strategies to Combat Human Arenavirus Infections. Current Molecular Medicine, 2005, 5, 735-751.	0.6	12
71	Characterization of the Interaction of Lassa Fever Virus with Its Cellular Receptor α-Dystroglycan. Journal of Virology, 2005, 79, 5979-5987.	1.5	102
72	Posttranslational Modification of α-Dystroglycan, the Cellular Receptor for Arenaviruses, by the Glycosyltransferase LARGE Is Critical for Virus Binding. Journal of Virology, 2005, 79, 14282-14296.	1.5	137

#	Article	IF	CITATIONS
73	Electron microscopy of an α-dystroglycan fragment containing receptor sites for lymphocytic choriomeningitis virus and laminin, and use of the receptoid body as a reagent to neutralize virus. Virology, 2004, 325, 207-215.	1.1	11
74	Use of alternative receptors different than α-dystroglycan by selected isolates of lymphocytic choriomeningitis virus. Virology, 2004, 325, 432-445.	1.1	57
75	Molecular Recognition by LARGE Is Essential for Expression of Functional Dystroglycan. Cell, 2004, 117, 953-964.	13.5	243
76	α-Dystroglycan can mediate arenavirus infection in the absence of β-dystroglycan. Virology, 2003, 316, 213-220.	1.1	18
77	Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology, 2003, 314, 168-178.	1.1	136
78	New World Arenavirus Clade C, but Not Clade A and B Viruses, Utilizes α-Dystroglycan as Its Major Receptor. Journal of Virology, 2002, 76, 5140-5146.	1.5	172
79	Differences in Affinity of Binding of Lymphocytic Choriomeningitis Virus Strains to the Cellular Receptor α-Dystroglycan Correlate with Viral Tropism and Disease Kinetics. Journal of Virology, 2001, 75, 448-457.	1.5	152
80	Molecular analysis of the interaction of LCMV with its cellular receptor α-dystroglycan. Journal of Cell Biology, 2001, 155, 301-310.	2.3	152
81	Immunosuppression and Resultant Viral Persistence by Specific Viral Targeting of Dendritic Cells. Journal of Experimental Medicine, 2000, 192, 1249-1260.	4.2	273
82	Arenavirus infection in the nervous system: uncovering principles of virus–host interaction and viral pathogenesis. , 0, , 75-93.		1