
Catherine Daniel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4932845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistence and dynamics of fluorescent <i>Lactobacillus plantarum</i> in the healthy <i>versus</i> inflamed gut. Gut Microbes, 2021, 13, 1-16.	9.8	9
2	Assessment of Pb(II), Cd(II), and Al(III) Removal Capacity of Bacteria from Food and Gut Ecological Niches: Insights into Biodiversity to Limit Intestinal Biodisponibility of Toxic Metals. Microorganisms, 2021, 9, 456.	3.6	27
3	Adherent-Invasive and Non-Invasive Escherichia coli Isolates Differ in Their Effects on Caenorhabditis elegans' Lifespan. Microorganisms, 2021, 9, 1823.	3.6	5
4	Highâ€dose dietary supplementation with zinc prevents gut inflammation: Investigation of the role of metallothioneins and beyond by transcriptomic and metagenomic studies. FASEB Journal, 2020, 34, 12615-12633.	0.5	20
5	Polymorphism in the Yersinia LcrV Antigen Enables Immune Escape From the Protection Conferred by an LcrV-Secreting Lactococcus Lactis in a Pseudotuberculosis Mouse Model. Frontiers in Immunology, 2019, 10, 1830.	4.8	21
6	Contribution of the Gut Microbiota in P28GST-Mediated Anti-Inflammatory Effects: Experimental and Clinical Insights. Cells, 2019, 8, 577.	4.1	11
7	E. coli Nissle 1917 is a safe mucosal delivery vector for a birch-grass pollen chimera to prevent allergic poly-sensitization. Mucosal Immunology, 2019, 12, 132-144.	6.0	28
8	L. plantarum WCFS1 enhances Treg frequencies by activating DCs even in absence of sampling of bacteria in the Peyer Patches. Scientific Reports, 2018, 8, 1785.	3.3	17
9	Drosophila Perpetuates Nutritional Mutualism by Promoting the Fitness of Its Intestinal Symbiont Lactobacillus plantarum. Cell Metabolism, 2018, 27, 362-377.e8.	16.2	114
10	Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Frontiers in Microbiology, 2018, 9, 2899.	3.5	112
11	Snapshot on a Pilot Metagenomic Study for the Appraisal of Gut Microbial Diversity in Mice, Cat, and Man. Gastroenterology Research and Practice, 2016, 2016, 1-7.	1.5	1
12	Characterization of the protective immune response to Yersinia pseudotuberculosis infection in mice vaccinated with an LcrV-secreting strain of Lactococcus lactis. Vaccine, 2016, 34, 5762-5767.	3.8	11
13	Does oral exposure to cadmium and lead mediate susceptibility to colitis? The dark-and-bright sides of heavy metals in gut ecology. Scientific Reports, 2016, 6, 19200.	3.3	46
14	Dual-Color Bioluminescence Imaging for Simultaneous Monitoring of the Intestinal Persistence of Lactobacillus plantarum and Lactococcus lactis in Living Mice. Applied and Environmental Microbiology, 2015, 81, 5344-5349.	3.1	23
15	Maintaining gut ecosystems for health: Are transitory food bugs stowaways or part of the crew?. International Journal of Food Microbiology, 2015, 213, 139-143.	4.7	30
16	Anti-Inflammatory Properties of Streptococcus salivarius, a Commensal Bacterium of the Oral Cavity and Digestive Tract. Applied and Environmental Microbiology, 2014, 80, 928-934.	3.1	151
17	Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicology Letters, 2013, 222, 132-138.	0.8	153
18	Probiotics from research to market: the possibilities, risks and challenges. Current Opinion in Microbiology, 2013, 16, 284-292.	5.1	154

CATHERINE DANIEL

#	Article	IF	CITATIONS
19	Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine. Archives of Toxicology, 2013, 87, 1787-1795.	4.2	87
20	Bioluminescence Imaging Study of Spatial and Temporal Persistence of Lactobacillus plantarum and Lactococcus lactis in Living Mice. Applied and Environmental Microbiology, 2013, 79, 1086-1094.	3.1	49
21	Understanding Immunomodulatory Effects of Probiotics. Nestle Nutrition Institute Workshop Series, 2013, 77, 75-90.	0.1	2
22	Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 368-375.	5.7	43
23	Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends in Biotechnology, 2011, 29, 499-508.	9.3	79
24	Immunomodulatory properties of <i>Lactobacillus plantarum</i> and its use as a recombinant vaccine against mite allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 406-414.	5.7	72
25	Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine, 2009, 27, 1141-1144.	3.8	53
26	Therapeutic Potential of Yersinia Anti-Inflammatory Components. Advances in Experimental Medicine and Biology, 2007, 603, 361-366.	1.6	0
27	Prevention and Treatment of Colitis With Lactococcus lactis Secreting the Immunomodulatory Yersinia LcrV Protein. Gastroenterology, 2007, 133, 862-874.	1.3	108
28	The European LABDEL project and its relevance to the prevention and treatment of allergies. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 1237-1242.	5.7	18
29	Immunomodulatory Properties of Recombinant Lactic Acid Bacteria Encoding a Major House-dust Mite Allergen. Journal of Allergy and Clinical Immunology, 2006, 117, S220.	2.9	1
30	Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 812-819.	5.7	101
31	Selecting Lactic Acid Bacteria for Their Safety and Functionality by Use of a Mouse Colitis Model. Applied and Environmental Microbiology, 2006, 72, 5799-5805.	3.1	110
32	Potential and Opportunities for Use of Recombinant Lactic Acid Bacteria in Human Health. Advances in Applied Microbiology, 2004, 56, 1-64.	2.4	67
33	Mucosal co-application of lactic acid bacteria and allergen induces counter-regulatory immune responses in a murine model of birch pollen allergy. Vaccine, 2003, 22, 87-95.	3.8	114
34	Ammonia Switch-Off of Nitrogen Fixation in the Methanogenic Archaeon Methanococcus maripaludis : Mechanistic Features and Requirement for the Novel GlnB Homologues, Nifl 1 and Nifl 2. Journal of Bacteriology, 2001, 183, 882-889.	2.2	87
35	Characterization of theAcinetobacter baumanniiFur regulator: cloning and sequencing of thefurhomolog gene. FEMS Microbiology Letters, 1999, 170, 199-209.	1.8	37
36	Effects of Host Iron Transport Compounds on Growth Kinetics and Outer-Membrane Protein Expression ofBilophila wadsworthia. Anaerobe, 1998, 4, 103-109.	2.1	0

#	Article	IF	CITATIONS
37	Effect of Iron Depletion on Protein Profiles of Bilophila wadsworthia. Clinical Infectious Diseases, 1995, 20, S158-S159.	5.8	3