Suresh Awale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4932807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Identification of Arctigenin as an Antitumor Agent Having the Ability to Eliminate the Tolerance of Cancer Cells to Nutrient Starvation. Cancer Research, 2006, 66, 1751-1757.	0.4	301
3	Xanthine Oxidase Inhibitory Activity of Vietnamese Medicinal Plants. Biological and Pharmaceutical Bulletin, 2004, 27, 1414-1421.	0.6	159
4	Constituents of the Vietnamese Medicinal Plant Orthosiphon stamineus Chemical and Pharmaceutical Bulletin, 2000, 48, 1711-1719.	0.6	152
5	Cytotoxic constituents from Brazilian red propolis and their structure–activity relationship. Bioorganic and Medicinal Chemistry, 2008, 16, 5434-5440.	1.4	134
6	Antiproliferative activity of the Netherlands propolis and its active principles in cancer cell lines. Journal of Ethnopharmacology, 2002, 80, 67-73.	2.0	132
7	Constituents of Brazilian red propolis and their preferential cytotoxic activity against human pancreatic PANC-1 cancer cell line in nutrient-deprived condition. Bioorganic and Medicinal Chemistry, 2008, 16, 181-189.	1.4	130
8	Pancreatic anticancer activity of a novel geranylgeranylated coumarin derivative. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5770-5773.	1.0	103
9	Angelmarin, a novel anti-cancer agent able to eliminate the tolerance of cancer cells to nutrient starvation. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 581-583.	1.0	93
10	Xanthine Oxidase Inhibitors from the Flowers ofChrysanthemum sinense. Planta Medica, 2006, 72, 46-51.	0.7	86
11	Study on the Constituents of Mexican Propolis and Their Cytotoxic Activity against PANC-1 Human Pancreatic Cancer Cells. Journal of Natural Products, 2010, 73, 623-627.	1.5	84
12	Antimalarial Activity of Cassane- and Norcassane-Type Diterpenes from Caesalpinia crista and Their Structure-Activity Relationship. Biological and Pharmaceutical Bulletin, 2006, 29, 1050-1052.	0.6	81
13	Bioactive Secondary Metabolites fromBoesenbergia pandurataof Myanmar and Their Preferential Cytotoxicity against Human Pancreatic Cancer PANC-1 Cell Line in Nutrient-Deprived Medium. Journal of Natural Products, 2007, 70, 1582-1587.	1.5	77
14	Six New Diarylheptanoids from the Seeds ofAlpiniablepharocalyx. Journal of Natural Products, 2001, 64, 289-293.	1.5	76
15	Cassane- and Norcassane-Type Diterpenes fromCaesalpiniacristaof Indonesia and Their Antimalarial Activity against the Growth ofPlasmodiumfalciparum. Journal of Natural Products, 2005, 68, 706-710.	1.5	75
16	Chemical Constituents of Propolis from Myanmar and Their Preferential Cytotoxicity against a Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2009, 72, 1283-1287.	1.5	68
17	Nickel(II) bis(isatin thiosemicarbazone) complexes induced apoptosis through mitochondrial signaling pathway and GO/G1 cell cycle arrest in IM-9 cells. Journal of Inorganic Biochemistry, 2018, 182, 208-221.	1.5	68
18	Xanthine Oxidase Inhibitors from the Heartwood of Vietnamese Caesalpinia sappan. Chemical and Pharmaceutical Bulletin, 2005, 53, 984-988.	0.6	64

#	Article	IF	CITATIONS
19	Ancistrolikokine E ₃ , a 5,8′-Coupled Naphthylisoquinoline Alkaloid, Eliminates the Tolerance of Cancer Cells to Nutrition Starvation by Inhibition of the Akt/mTOR/Autophagy Signaling Pathway. Journal of Natural Products, 2018, 81, 2282-2291.	1.5	64
20	Neoflavonoids and Related Constituents from Nepalese Propolis and Their Nitric Oxide Production Inhibitory Activity. Journal of Natural Products, 2005, 68, 858-864.	1.5	58
21	Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. International Journal of Oncology, 2013, 43, 329-337.	1.4	58
22	A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncology Reports, 2013, 30, 2357-2364.	1.2	58
23	DPPH Radical Scavenging and Nitric Oxide Inhibitory Activities of the Constituents from the Wood ofTaxus yunnanensis. Planta Medica, 2003, 69, 500-505.	0.7	57
24	Quassinoids from <i>Eurycoma longifolia</i> . Journal of Natural Products, 2009, 72, 2135-2140.	1.5	48
25	Quadranosides VI-XI, Six New Triterpene Glucosides from the Seeds of Combretum quadrangulare Chemical and Pharmaceutical Bulletin, 2000, 48, 1114-1120.	0.6	47
26	Five Novel Highly Oxygenated Diterpenes ofOrthosiphonstamineusfrom Myanmar. Journal of Natural Products, 2001, 64, 592-596.	1.5	46
27	Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu(<scp>ii</scp>) complexes: enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Transactions, 2020, 49, 9411-9424.	1.6	46
28	Panduratins D-I, Novel Secondary Metabolites from Rhizomes of Boesenbergia pandurata. Chemical and Pharmaceutical Bulletin, 2008, 56, 491-496.	0.6	45
29	New prenylated flavones from Artocarpus champeden, and their antimalarial activity in vitro. Journal of Natural Medicines, 2007, 61, 410-413.	1.1	44
30	Novel anticancer agents, kayeassamins Câ^'l from the flower of Kayea assamica of Myanmar. Bioorganic and Medicinal Chemistry, 2008, 16, 8653-8660.	1.4	44
31	Constituents of the Rhizomes of <i>Boesenbergia pandurata</i> and Their Antiausterity Activities against the PANC-1 Human Pancreatic Cancer Line. Journal of Natural Products, 2017, 80, 141-148.	1.5	44
32	Chemical Constituents of Propolis from Vietnamese Trigona minor and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2017, 80, 2345-2352.	1.5	44
33	Hypouricemic Effects of Acacetin and 4,5-O-Dicaffeoylquinic Acid Methyl Ester on Serum Uric Acid Levels in Potassium Oxonate-Pretreated Rats. Biological and Pharmaceutical Bulletin, 2005, 28, 2231-2234.	0.6	42
34	Cytotoxic Constituents of Propolis from Myanmar and Their Structure-Activity Relationship. Biological and Pharmaceutical Bulletin, 2009, 32, 2075-2078.	0.6	42
35	Chemical Constituents of Thai <i>Citrus hystrix</i> and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2018, 81, 1877-1883.	1.5	42
36	Highly-Oxygenated Isopimarane-Type Diterpenes from Orthosiphon stamineus of Indonesia and Their Nitric Oxide Inhibitory Activity Chemical and Pharmaceutical Bulletin, 2003, 51, 268-275.	0.6	41

#	Article	IF	CITATIONS
37	Novel anticancer agents, kayeassamins A and B from the flower of Kayea assamica of Myanmar. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4688-4691.	1.0	41
38	Antiausterity Agents from Uvaria dac and Their Preferential Cytotoxic Activity against Human Pancreatic Cancer Cell Lines in a Nutrient-Deprived Condition. Journal of Natural Products, 2012, 75, 1177-1183.	1.5	41
39	Synthesis and antitumor evaluation of arctigenin derivatives based on antiausterity strategy. European Journal of Medicinal Chemistry, 2013, 60, 76-88.	2.6	40
40	Chemical Constituents of <i>Mangifera indica</i> and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2016, 79, 2053-2059.	1.5	40
41	Jozilebomines A and B, Naphthylisoquinoline Dimers from the Congolese Liana <i>Ancistrocladus ileboensis,</i> with Antiausterity Activities against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2017, 80, 2807-2817.	1.5	40
42	Nitric Oxide Inhibitory Isopimarane-type Diterpenes fromOrthosiphonstamineusof Indonesia. Journal of Natural Products, 2003, 66, 255-258.	1.5	38
43	Cassane- and Norcassane-Type Diterpenes ofCaesalpiniacristafrom Myanmar. Journal of Natural Products, 2004, 67, 1859-1863.	1.5	38
44	Chemical constituents of Thai propolis. Fìtoterapìâ, 2013, 88, 96-100.	1.1	38
45	Norstaminane- and isopimarane-type diterpenes of Orthosiphon stamineus from Okinawa. Tetrahedron, 2002, 58, 5503-5512.	1.0	37
46	Staminane- and Isopimarane-Type Diterpenes fromOrthosiphonstamineusof Taiwan and Their Nitric Oxide Inhibitory Activity. Journal of Natural Products, 2004, 67, 654-658.	1.5	37
47	Cytotoxic Constituents of Soymida febrifuga from Myanmar. Journal of Natural Products, 2009, 72, 1631-1636.	1.5	37
48	Survivin suppression through STAT3/β-catenin is essential for resveratrol-induced melanoma apoptosis. International Journal of Oncology, 2014, 45, 895-901.	1.4	37
49	α-Glucosidase Inhibitory and Cytotoxic Taxane Diterpenoids from the Stem Bark of <i>Taxus wallichiana</i> . Journal of Natural Products, 2017, 80, 1087-1095.	1.5	37
50	Cleistanthane diterpenes from the seed of Caesalpinia sappan and their antiausterity activity against PANC-1 human pancreatic cancer cell line. Fìtoterapìâ, 2013, 91, 148-153.	1.1	36
51	Cassane diterpenes from the seed kernels of Caesalpinia sappan. Phytochemistry, 2016, 122, 286-293.	1.4	36
52	Constituents of Caesalpinia crista from Indonesia. Chemical and Pharmaceutical Bulletin, 2006, 54, 213-218.	0.6	35
53	(+)-Grandifloracin, an antiausterity agent, induces autophagic PANC-1 pancreatic cancer cell death. Drug Design, Development and Therapy, 2014, 8, 39.	2.0	33
54	Siphonols A–E: Novel nitric oxide inhibitors from Orthosiphon stamineus of Indonesia. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 31-35.	1.0	32

#	Article	IF	CITATIONS
55	Methyl Migrated Cassane-Type Furanoditerpenes of Caesalpinia crista from Myanmar. Chemical and Pharmaceutical Bulletin, 2005, 53, 1300-1304.	0.6	32
56	Gardenifolins A–H, Scalemic Neolignans from <i>Gardenia ternifolia</i> : Chiral Resolution, Configurational Assignment, and Cytotoxic Activities against the HeLa Cancer Cell Line. Journal of Natural Products, 2017, 80, 1604-1614.	1.5	32
57	Inhibition of NO Production by Highly-Oxygenated Diterpenes of Orthosiphon stamineus and Their Structure-Activity Relationship Biological and Pharmaceutical Bulletin, 2003, 26, 468-473.	0.6	30
58	Michellamines A ₆ and A ₇ , and further mono- and dimeric naphthylisoquinoline alkaloids from a Congolese <i>Ancistrocladus</i> liana and their antiausterity activities against pancreatic cancer cells. RSC Advances, 2018, 8, 5243-5254.	1.7	30
59	Four Highly Oxygenated Isopimarane-Type Diterpenes of Orthosiphon stamineus. Planta Medica, 2002, 68, 286-288.	0.7	29
60	Damnacanthal from the Congolese Medicinal Plant <i>Garcinia huillensis</i> has a Potent Preferential Cytotoxicity against Human Pancreatic Cancer PANCâ€1 Cells. Phytotherapy Research, 2012, 26, 1920-1926.	2.8	29
61	Ancistrobrevines E-J and related naphthylisoquinoline alkaloids from the West African liana Ancistrocladus abbreviatus with inhibitory activities against Plasmodium falciparum and PANC-1 human pancreatic cancer cells. Fìtoterapìâ, 2018, 131, 245-259.	1.1	28
62	Chemical Constituents of <i>Anneslea fragrans</i> and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2019, 82, 3133-3139.	1.5	28
63	Protective Effects of <i>Rosa damascena</i> and Its Active Constituent on A <i>β</i> (25–35)-Induced Neuritic Atrophy. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-8.	0.5	27
64	Muchimangins A–D: novel diphenylmethyl-substituted xanthones from Securidaca longepedunculata. Tetrahedron Letters, 2012, 53, 6186-6190.	0.7	27
65	Heptaoxygenated xanthones as anti-austerity agents from Securidaca longepedunculata. Bioorganic and Medicinal Chemistry, 2013, 21, 7663-7668.	1.4	27
66	Highly Potent Antiausterity Agents from <i>Callistemon citrinus</i> and Their Mechanism of Action against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2020, 83, 2221-2232.	1.5	27
67	Identification of Chrysoplenetin from <i>Vitex negundo</i> as a Potential Cytotoxic Agent against PANCâ€l and a Panel of 39 Human Cancer Cell Lines (JFCRâ€39). Phytotherapy Research, 2011, 25, 1770-1775.	2.8	26
68	Highly active copper(<scp>i</scp>) complexes of aroylthiourea ligands against cancer cells – synthetic and biological studies. New Journal of Chemistry, 2019, 43, 3188-3198.	1.4	26
69	Neosappanone A, a xanthine oxidase (XO) inhibitory dimeric methanodibenzoxocinone with a new carbon skeleton from Caesalpinia sappan. Tetrahedron Letters, 2004, 45, 8519-8522.	0.7	24
70	Nitric Oxide (NO) Production Inhibitory Constituents of Tabebuia avellanedae from Brazil. Chemical and Pharmaceutical Bulletin, 2005, 53, 710-713.	0.6	24
71	Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2902-2906.	1.0	24
72	Ancistrolikokines E–H and related 5,8′-coupled naphthylisoquinoline alkaloids from the Congolese liana <i>Ancistrocladus likoko</i> with antiausterity activities against PANC-1 human pancreatic cancer cells. RSC Advances, 2017, 7, 53740-53751.	1.7	24

#	Article	IF	CITATIONS
73	Ancistroyafungines A-D, 5,8′- and 5,1′-coupled naphthylisoquinoline alkaloids from a Congolese Ancistrocladus species, with antiausterity activities against human PANC-1 pancreatic cancer cells. Fìtoterapìâ, 2018, 130, 6-16.	1.1	24
74	Design and synthesis of functionalized coumarins as potential anti-austerity agents that eliminates cancer cells' tolerance to nutrition starvation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1779-1784.	1.0	24
75	Diterpenes from â€Pini Resina―and their Preferential Cytotoxic Activity under Nutrient-Deprived Condition. Planta Medica, 2006, 72, 1231-1234.	0.7	23
76	Cytochrome P450 3A4 Inhibitory Constituents of the Wood ofTaxus yunnanensis. Journal of Natural Products, 2011, 74, 102-105.	1.5	23
77	Geranyl Dihydrochalcones from Artocarpus altilis and Their Antiausteric Activity. Planta Medica, 2014, 80, 193-200.	0.7	23
78	Cytotoxicity of constituents from Mexican propolis against a panel of six different cancer cell lines. Natural Product Communications, 2010, 5, 1601-6.	0.2	23
79	New Cassane-Type Diterpenes of Caesalpinia crista from Myanmar. Chemical and Pharmaceutical Bulletin, 2005, 53, 214-218.	0.6	22
80	Discovery of 2-pyridineformamide thiosemicarbazones as potent antiausterity agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 458-461.	1.0	22
81	Evaluation of synthetic coumarins for antiausterity cytotoxicity against pancreatic cancers. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1471-1474.	1.0	22
82	Lignans from the root of Wikstroemia indica and their cytotoxic activity against PANC-1 human pancreatic cancer cells. Fìtoterapìâ, 2017, 121, 31-37.	1.1	22
83	Secoorthosiphols A–C: three highly oxygenated secoisopimarane-type diterpenes from Orthosiphon stamineus. Tetrahedron Letters, 2002, 43, 1473-1475.	0.7	20
84	Kleeb Bua Daeng, a Thai Traditional Herbal Formula, Ameliorated Unpredictable Chronic Mild Stress-Induced Cognitive Impairment in ICR Mice. Molecules, 2019, 24, 4587.	1.7	20
85	Uvaridacols E–H, Highly Oxygenated Antiausterity Agents from <i>Uvaria dac</i> . Journal of Natural Products, 2012, 75, 1999-2002.	1.5	19
86	A New Ciprofloxacin-derivative Inhibits Proliferation and Suppresses the Migration Ability of HeLa Cells. Anticancer Research, 2020, 40, 5025-5033.	0.5	19
87	Calosides A–F, Cardenolides from <i>Calotropis gigantea</i> and Their Cytotoxic Activity. Journal of Natural Products, 2020, 83, 385-391.	1.5	19
88	Facile and Regioselective Synthesis of Phenylpropanoid-Substituted Flavan-3-ols. Organic Letters, 2002, 4, 1707-1709.	2.4	18
89	Chemical constituents of Callistemon citrinus from Egypt and their antiausterity activity against PANC-1 human pancreatic cancer cell line. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127352.	1.0	18
90	Neoorthosiphonone A; a nitric oxide (NO) inhibitory diterpene with new carbon skeleton from Orthosiphon stamineus. Tetrahedron Letters, 2004, 45, 1359-1362.	0.7	17

#	Article	IF	CITATIONS
91	Two New Cytotoxic Phenylallylflavanones from Mexican Propolis. Chemical and Pharmaceutical Bulletin, 2011, 59, 1194-1196.	0.6	17
92	Identification of plant extracts sensitizing breast cancer cells to TRAIL. Oncology Reports, 2013, 29, 1991-1998.	1.2	17
93	Ealamines A–H, a Series of Naphthylisoquinolines with the Rare 7,8′-Coupling Site, from the Congolese Liana <i>Ancistrocladus ealaensis</i> , Targeting Pancreatic Cancer Cells. Journal of Natural Products, 2019, 82, 3150-3164.	1.5	17
94	Benzophenones from Betula alnoides with Antiausterity Activities against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2021, 84, 1607-1616.	1.5	17
95	Phytochemical Constituents of the Bark of Vitex negundo L Journal of Nepal Chemical Society, 1970, 23, 89-92.	0.7	16
96	Muchimangins G–J, Fully Substituted Xanthones with a Diphenylmethyl Substituent, from <i>Securidaca longepedunculata</i> . Journal of Natural Products, 2014, 77, 1241-1244.	1.5	16
97	In vitro and in vivo anticancer activity of 2-acetyl-benzylamine isolated from Adhatoda vasica L. leaves. Biomedicine and Pharmacotherapy, 2017, 93, 796-806.	2.5	16
98	Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD. Behavioural Brain Research, 2017, 334, 6-15.	1.2	16
99	Cytotoxicity of Constituents from Mexican Propolis against a Panel of Six Different Cancer Cell Lines. Natural Product Communications, 2010, 5, 1934578X1000501.	0.2	15
100	Highly oxygenated antiausterity agents from the leaves of Uvaria dac. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1967-1971.	1.0	15
101	Ancistrobrevidines A-C and related naphthylisoquinoline alkaloids with cytotoxic activities against HeLa and pancreatic cancer cells, from the liana Ancistrocladus abbreviatus. Bioorganic and Medicinal Chemistry, 2021, 30, 115950.	1.4	15
102	Muchimangins E and F: novel diphenylmethyl-substituted xanthones from Securidaca longepedunculata. Tetrahedron Letters, 2014, 55, 1916-1919.	0.7	14
103	Phosphorylated Akt Protein at Ser473 Enables HeLa Cells to Tolerate Nutrient-Deprived Conditions. Asian Pacific Journal of Cancer Prevention, 2017, 18, 3255-3260.	0.5	14
104	Anti-Austerity Agents from Rhizoma et Radix Notopterygii (Qianghuo). Planta Medica, 2012, 78, 796-799.	0.7	13
105	Daily administration of yokukansan and keishito prevents social isolation-induced behavioral abnormalities and down-regulation of phosphorylation of neuroplasticity-related signaling molecules in mice. BMC Complementary and Alternative Medicine, 2017, 17, 195.	3.7	13
106	Ancistrosecolines A–F, Unprecedented <i>seco</i> -Naphthylisoquinoline Alkaloids from the Roots of <i>Ancistrocladus abbreviatus</i> , with Apoptosis-Inducing Potential against HeLa Cancer Cells. Journal of Natural Products, 2020, 83, 1139-1151.	1.5	13
107	Anti-Austerity Activity of Thai Medicinal Plants: Chemical Constituents and Anti-Pancreatic Cancer Activities of Kaempferia parviflora. Plants, 2021, 10, 229.	1.6	13
108	Sn(<scp>ii</scp>)-Mediated facile approach for the synthesis of 2-aryl-2H-indazole-3-phosphonates and their anticancer activities. New Journal of Chemistry, 2017, 41, 5582-5594.	1.4	12

#	Article	IF	CITATIONS
109	Ru(II)-Catalyzed Regiospecific C–H/O–H Oxidative Annulation to Access Isochromeno[8,1- <i>ab</i>]phenazines: Far-Red Fluorescence and Live Cancer Cell Imaging. ACS Omega, 2017, 2, 2694-2705.	1.6	12
110	Discovery of potential antiausterity agents from the Japanese cypress Chamaecyparis obtusa. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4898-4903.	1.0	12
111	Sidechain Diversification of Grandifloracin Allows Identification of Analogues with Enhanced Antiâ€Austerity Activity against Human PANCâ€1 Pancreatic Cancer Cells. ChemMedChem, 2020, 15, 125-135.	1.6	12
112	Antiausterity Activity of Secondary Metabolites from the Roots of <i>Ferula hezarlalehzarica</i> against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2020, 83, 1099-1106.	1.5	12
113	Synthetic Studies on Poison-Frog Alkaloid 261C. Synlett, 2005, 2005, 3109-3110.	1.0	11
114	Alkaline Phosphatase (ALP) Enhancing Iridoid Glucosides from the Indonesian Medicinal Plant Barleria Lupulina. Natural Product Communications, 2010, 5, 1934578X1000501.	0.2	10
115	Anti-austeric Activity of Phenolic Constituents of Seeds of Arctium lappa. Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	10
116	Bis(μ-chloro) bridged 1D Cu I and Cu II coordination polymer complex and mononuclear Cu II complex: Synthesis, crystal structure and biological properties. Journal of Photochemistry and Photobiology B: Biology, 2018, 181, 59-69.	1.7	10
117	Chemical constituents from <i>Artemisia vulgaris</i> and their antiausterity activities against the PANC-1 human pancreatic cancer cell line. Natural Product Research, 2021, 35, 4279-4285.	1.0	10
118	Chemical constituents from <i>Oroxylum indicum</i> (L.) Kurz of Nepalese Origin. Scientific World, 2010, 8, 66-68.	0.1	9
119	Benzylisoquinoline alkaloids from Nelumbo nucifera Gaertn. petals with antiausterity activities against the HeLa human cervical cancer cell line. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2021, 76, 401-406.	0.6	9
120	1-O-Galloyl-6-O-(4-hydroxy-3,5-dimethoxy)benzoyl-β-D-glucose, a New Hepatoprotective Constituent from Combretum quadrangulare. Planta Medica, 2001, 67, 370-371.	0.7	8
121	Synthesis of novel β-amino alcohols from phenylacetylcarbinol: cytotoxicity activity against A549 cells and molecular docking. Research on Chemical Intermediates, 2018, 44, 535-552.	1.3	8
122	Kami-shoyo-san improves ASD-like behaviors caused by decreasing allopregnanolone biosynthesis in an SKF mouse model of autism. PLoS ONE, 2019, 14, e0211266.	1.1	8
123	Fragranol A: A new class of spiro-triflavanoid hybrid with an unprecedented carbon skeleton from Anneslea fragrans. Tetrahedron Letters, 2020, 61, 152099.	0.7	8
124	New Guaian-type Sesquiterpene from <i>Wikstroemia indica</i> . Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	7
125	Synthesis of long-chain fatty acid derivatives as a novel anti-Alzheimer's agent. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 604-608.	1.0	7
126	Sansoninto, a traditional herbal medicine, ameliorates behavioral abnormalities and down-regulation of early growth response-1 expression in mice exposed to social isolation stress. Journal of Traditional and Complementary Medicine, 2018, 8, 81-88.	1.5	7

#	Article	IF	CITATIONS
127	Synthesis of guggulsterone derivatives as potential anti-austerity agents against PANC-1 human pancreatic cancer cells. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126964.	1.0	7
128	Panduratins Q–Y, dimeric metabolites from Boesenbergia rotunda and their antiausterity activities against the PANC-1 human pancreatic cancer cell line. Phytochemistry, 2021, 183, 112646.	1.4	7
129	A new anti-austerity agent, 4′-O-methylgrynullarin from Derris scandens induces PANC-1 human pancreatic cancer cell death under nutrition starvation via inhibition of Akt/mTOR pathway. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127967.	1.0	7
130	Merging the Multi-Target Effects of Kleeb Bua Daeng, a Thai Traditional Herbal Formula in Unpredictable Chronic Mild Stress-Induced Depression. Pharmaceuticals, 2021, 14, 659.	1.7	7
131	Cytotoxic Activity of Quassinoids from Eurycoma longifolia. Natural Product Communications, 2010, 5, 1934578X1000500.	0.2	6
132	Antioxidant, Phytotoxic and Antimicrobial Activities of Methanolic Extract of Bauhinia variegata Barks. Journal of Institute of Science and Technology, 2015, 20, 37-41.	0.2	6
133	A New Alkenylphenol from the Propolis of Stingless Bee Trigona minor. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	6
134	Kami-shoyo-san ameliorates sociability deficits in ovariectomized mice, a putative female model of autism spectrum disorder, via facilitating dopamine D1 and GABAA receptor functions. Journal of Ethnopharmacology, 2019, 236, 231-239.	2.0	6
135	Orengedokuto and san'oshashinto improve memory deficits by inhibiting aging-dependent activation of glycogen synthase kinase-31². Journal of Traditional and Complementary Medicine, 2019, 9, 328-335.	1.5	6
136	Highly oxygenated spiro-biflavanoids from Anneslea fragrans twigs. Phytochemistry Letters, 2020, 40, 21-25.	0.6	6
137	A Triterpene Lactone from <i>Callistemon citrinus</i> Inhibits the PANCâ€1 Human Pancreatic Cancer Cells Viability through Suppression of Unfolded Protein Response. Chemistry and Biodiversity, 2020, 17, e2000495.	1.0	6
138	Growth Inhibitory Activity of Wood ofTaxus yunnanensisand its Liquid Chromatography Fourier-Transform Mass Spectrometry Analysis. Planta Medica, 2006, 72, 1241-1244.	0.7	5
139	Isolation, Identification and Antimicrobial Activity of a Withanolide [WS-1] from the Roots of Withania somnifera. Nepal Journal of Science and Technology, 0, 12, 179-186.	0.1	5
140	A new flavanone derivative from the rhizomes of <i>Boesenbergia pandurata</i> . Natural Product Research, 2022, 36, 1959-1965.	1.0	5
141	Anti-inflammatory effects of Morus alba Linne bark on the activation of toll-like receptors and imiquimod-induced ear edema in mice. BMC Complementary Medicine and Therapies, 2021, 21, 115.	1.2	5
142	A New Cassane-type Diterpene from the Seed of Caesalpinia sappan. Natural Product Communications, 2016, 11, 723-4.	0.2	5
143	Abietane diterpenes from Abies spectabilis and their anti-pancreatic cancer activity against the MIA PaCa-2 cell line. Bioorganic and Medicinal Chemistry Letters, 2022, 66, 128723.	1.0	5
144	Total Synthesis of 4'â€ <i>O</i> â€Methylgrynullarin and Related Isoflavone Natural Products. ChemistrySelect, 2022, 7, .	0.7	5

#	Article	IF	CITATIONS
145	Antiausterity Activity of Arctigenin Enantiomers: Importance of (2R,3R)-Absolute Configuration. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	4
146	Prenylated Dihydrochalcones from Artocarpus altilis as Antiausterity Agents. The Enzymes, 2015, 37, 95-110.	0.7	4
147	Chrysin Inhibits Lymphangiogenesis <i>in Vitro</i> . Biological and Pharmaceutical Bulletin, 2016, 39, 466-472.	0.6	4
148	Coâ€cultured bone marrow mesenchymal stem cells repair thioacetamideâ€induced hepatocyte damage. Cell Biology International, 2020, 44, 2459-2472.	1.4	4
149	A new cytotoxic cardenolide from the roots of Calotropis gigantea. Natural Product Research, 2020, 35, 1-6.	1.0	4
150	Fragranone C: a new dihydrochalcone glucopyranoside from <i>Anneslea fragrans</i> twigs. Natural Product Research, 2021, 35, 3895-3900.	1.0	4
151	(+)-Panduratin A induces PANC-1 human pancreatic cancer cell death preferentially under nutrient starvation by inhibiting PI3K/Akt/mTOR/autophagy signaling pathway. Phytomedicine Plus, 2021, 1, 100101.	0.9	4
152	Structure-activity relationship and mechanistic study on guggulsterone derivatives; Discovery of new anti-pancreatic cancer candidate. Bioorganic and Medicinal Chemistry, 2022, 54, 116563.	1.4	4
153	Anti-austeritic Constituents of the Congolese Medicinal Plant Aframomum melegueta. Natural Product Communications, 2015, 10, 997-9.	0.2	4
154	New callistrilone epimers from Callistemon citrinus and their antiausterity activity against the PANC-1 human pancreatic cancer cell line. Tetrahedron Letters, 2022, 100, 153881.	0.7	4
155	Effect of Yakae-Prajamduen-Jamod Traditional Thai Remedy on Cognitive Impairment in an Ovariectomized Mouse Model and Its Mechanism of Action. Molecules, 2022, 27, 4310.	1.7	4
156	Canthin-6-one Alkaloids and a Tirucallanoid from Eurycoma longifolia and Their Cytotoxic Activity against a Human HT-1080 Fibrosarcoma Cell Line. Natural Product Communications, 2010, 5, 1934578X1000500.	0.2	3
157	Two New Diphenylmethyl-substituted Xanthones from Securidaca longepedunculata. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	3
158	Chemical constituents of Thai Piper ribesoides and their antiausterity activities against the PANC-1 human pancreatic cancer cell line. Fìtoterapìâ, 2021, 151, 104901.	1.1	3
159	Bioassay Guided Isolation of Free Radical Scavenging Agent from the Bark of Bridelia retusa. Journal of Institute of Science and Technology, 2015, 20, 97-101.	0.2	2
160	Synthesis of Alkyl Triphenylphosphonium Ostruthin Derivatives as Potential Cytotoxic Candidates. ChemistrySelect, 2020, 5, 12636-12640.	0.7	2
161	GDP Induces PANCâ€I Human Pancreatic Cancer Cell Death Preferentially under Nutrient Starvation by Inhibiting PI3K/Akt/mTOR/Autophagy Signaling Pathway. Chemistry and Biodiversity, 2021, 18, e2100389.	1.0	2
162	Analysis of MS/MS Fragmentation of Taxoids. Natural Product Communications, 2010, 5, 1934578X1000501.	0.2	1

#	Article	IF	CITATIONS
163	Anti-austeritic Constituents of the Congolese Medicinal Plant Aframomum melegueta. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	1
164	A New Cassane-type Diterpene from the Seed of Caesalpinia Sappan. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	1
165	Chemical constituents and absolute configuration of megastigmanes' isolated from Sedum sarmentosum Bunge. Natural Product Research, 2020, , 1-8.	1.0	1
166	Isolation and characterization of sterols and an aliphatic alcohol from <i>Tsuga dumosa</i> D. Don of Nepal. Scientific World, 2011, 9, 16-17.	0.1	0
167	A New Compound from the Rhizomes of Boesenbergia pandurata. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	0
168	Effect of ABP on cognitive impairment in ovariectomized mice model. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-12-24.	0.0	0
169	Kamisyoyosan, a Japanese traditional Kampo medicine, ameliorates sex-dependent ADS-like behavior caused by decrease of brain allopregnanolone. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-12-7.	0.0	0
170	Antiausterity activity against pancreatic cancer cells and antiplasmodial properties of naphthylisoquinoline alkaloids and their analogues. Planta Medica, 2019, 85, .	0.7	0