List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4932687/publications.pdf Version: 2024-02-01

LEI CHENC

#	Article	IF	CITATIONS
1	Greening of the Earth and its drivers. Nature Climate Change, 2016, 6, 791-795.	8.1	1,675
2	Detection and attribution of vegetation greening trend in China over the last 30Âyears. Global Change Biology, 2015, 21, 1601-1609.	4.2	597
3	Change in terrestrial ecosystem waterâ€use efficiency over the last three decades. Global Change Biology, 2015, 21, 2366-2378.	4.2	215
4	Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nature Communications, 2017, 8, 110.	5.8	186
5	Optimal daily generation scheduling of large hydro–photovoltaic hybrid power plants. Energy Conversion and Management, 2018, 171, 528-540.	4.4	180
6	Deriving operating rules for a large-scale hydro-photovoltaic power system using implicit stochastic optimization. Journal of Cleaner Production, 2018, 195, 562-572.	4.6	113
7	Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization. Applied Energy, 2019, 238, 863-875.	5.1	109
8	Exploring the physical controls of regional patterns of flow duration curves – Part 3: A catchment classification system based on regime curve indicators. Hydrology and Earth System Sciences, 2012, 16, 4467-4482.	1.9	104
9	Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China. Applied Energy, 2018, 228, 1341-1352.	5.1	103
10	Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy. Renewable Energy, 2021, 163, 772-782.	4.3	103
11	Exploring the physical controls of regional patterns of flow duration curves – Part 1: Insights from statistical analyses. Hydrology and Earth System Sciences, 2012, 16, 4435-4446.	1.9	102
12	Global patterns and climate drivers of waterâ€use efficiency in terrestrial ecosystems deduced from satelliteâ€based datasets and carbon cycle models. Global Ecology and Biogeography, 2016, 25, 311-323.	2.7	102
13	Seasonal responses of terrestrial ecosystem waterâ€use efficiency to climate change. Global Change Biology, 2016, 22, 2165-2177.	4.2	100
14	Evaluating relative merits of four baseflow separation methods in Eastern Australia. Journal of Hydrology, 2017, 549, 252-263.	2.3	100
15	Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology, 2018, 11, e1974.	1.1	100
16	Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. International Journal of Climatology, 2021, 41, 3994-4018.	1.5	92
17	Exploring the physical controls of regional patterns of flow duration curves – Part 4: A synthesis of empirical analysis, process modeling and catchment classification. Hydrology and Earth System Sciences, 2012, 16, 4483-4498.	1.9	87
18	Assessing interannual variability of evapotranspiration at the catchment scale using satelliteâ€based evapotranspiration data sets. Water Resources Research, 2011, 47, .	1.7	77

#	Article	IF	CITATIONS
19	Exploring the physical controls of regional patterns of flow duration curves – Part 2: Role of seasonality, the regime curve, and associated process controls. Hydrology and Earth System Sciences, 2012, 16, 4447-4465.	1.9	73
20	Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation. Energy, 2019, 179, 268-279.	4.5	73
21	Yellow River basin: living with scarcity. Water International, 2010, 35, 681-701.	0.4	68
22	Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170304.	1.8	63
23	Groundwater storage trends in the Loess Plateau of China estimated from streamflow records. Journal of Hydrology, 2015, 530, 281-290.	2.3	62
24	Simulating spatiotemporal variability of blue and green water resources availability with uncertainty analysis. Hydrological Processes, 2015, 29, 1942-1955.	1.1	58
25	Estimation of land surface evaporation using a generalized nonlinear complementary relationship. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1475-1487.	1.2	56
26	Longâ€ŧerm streamflow trends in the middle reaches of the Yellow River Basin: detecting drivers of change. Hydrological Processes, 2016, 30, 1315-1329.	1.1	53
27	Impacts of future climate change on water resource availability of eastern Australia: A case study of the Manning River basin. Journal of Hydrology, 2019, 573, 49-59.	2.3	52
28	Identifying time-varying hydrological model parameters to improve simulation efficiency by the ensemble Kalman filter: A joint assimilation of streamflow and actual evapotranspiration. Journal of Hydrology, 2019, 568, 758-768.	2.3	52
29	Spatial Distribution of Global Landscape Evaporation in the Early Twenty-First Century by Means of a Generalized Complementary Approach. Journal of Hydrometeorology, 2020, 21, 287-298.	0.7	49
30	Recent leveling off of vegetation greenness and primary production reveals the increasing soil water limitations on the greening Earth. Science Bulletin, 2021, 66, 1462-1471.	4.3	46
31	A Budyko-based framework for quantifying the impacts of aridity index and other factors on annual runoff. Journal of Hydrology, 2019, 579, 124224.	2.3	45
32	Automated Selection of Pure Base Flows from Regular Daily Streamflow Data: Objective Algorithm. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	40
33	Quantifying the impacts of vegetation changes on catchment storageâ€discharge dynamics using pairedâ€catchment data. Water Resources Research, 2017, 53, 5963-5979.	1.7	36
34	Real-time reservoir flood control operation for cascade reservoirs using a two-stage flood risk analysis method. Journal of Hydrology, 2019, 577, 123954.	2.3	35
35	A back-fitting algorithm to improve real-time flood forecasting. Journal of Hydrology, 2018, 562, 140-150.	2.3	34
36	A novel homozygous mutation in the FSHR gene is causative for primary ovarian insufficiency. Fertility and Sterility, 2017, 108, 1050-1055.e2.	0.5	32

#	Article	IF	CITATIONS
37	Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches. Journal of Hydrology, 2020, 585, 124780.	2.3	31
38	Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland. Journal of Hydrology, 2014, 519, 1084-1096.	2.3	30
39	Impacts of elevated CO 2 , climate change and their interactions on water budgets in four different catchments in Australia. Journal of Hydrology, 2014, 519, 1350-1361.	2.3	30
40	Spatiotemporal Variation of Drought and Associated Multi-Scale Response to Climate Change over the Yarlung Zangbo River Basin of Qinghai–Tibet Plateau, China. Remote Sensing, 2019, 11, 1596.	1.8	30
41	An improved complementary relationship for estimating evapotranspiration attributed to climate change and revegetation in the Loess Plateau, China. Journal of Hydrology, 2021, 592, 125516.	2.3	30
42	Quantifying the impacts of land-cover changes on global evapotranspiration based on the continuous remote sensing observations during 1982–2016. Journal of Hydrology, 2021, 598, 126231.	2.3	29
43	Incorporating reservoir impacts into flood frequency distribution functions. Journal of Hydrology, 2019, 568, 234-246.	2.3	25
44	The effect of spatial rainfall variability on water balance modelling for south-eastern Australian catchments. Journal of Hydrology, 2013, 493, 16-29.	2.3	23
45	Baseflow estimation for catchments in the Loess Plateau, China. Journal of Environmental Management, 2019, 233, 264-270.	3.8	23
46	An integrated framework for optimizing large hydro–photovoltaic hybrid energy systems: Capacity planning and operations management. Journal of Cleaner Production, 2021, 306, 127253.	4.6	23
47	Improved Understanding of How Catchment Properties Control Hydrological Partitioning Through Machine Learning. Water Resources Research, 2022, 58, .	1.7	22
48	Hybrid Two-Stage Stochastic Methods Using Scenario-Based Forecasts for Reservoir Refill Operations. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	1.3	21
49	Adapting reservoir operations to the nexus across water supply, power generation, and environment systems: An explanatory tool for policy makers. Journal of Hydrology, 2019, 574, 257-275.	2.3	21
50	Quantifying the contribution of climate and underlying surface changes to alpine runoff alterations associated with glacier melting. Hydrological Processes, 2021, 35, e14069.	1.1	21
51	Evaluating Global Land Surface Models in CMIP5: Analysis of Ecosystem Water- and Light-Use Efficiencies and Rainfall Partitioning. Journal of Climate, 2018, 31, 2995-3008.	1.2	20
52	Global Phosphorus Losses from Croplands under Future Precipitation Scenarios. Environmental Science & Technology, 2020, 54, 14761-14771.	4.6	20
53	Improving hydrological projection performance under contrasting climatic conditions using spatial coherence through a hierarchical Bayesian regression framework. Hydrology and Earth System Sciences, 2019, 23, 3405-3421.	1.9	19
54	High spatial resolution simulation of profile soil moisture by assimilating multi-source remote-sensed information into a distributed hydrological model. Journal of Hydrology, 2021, 597, 126311.	2.3	17

#	Article	IF	CITATIONS
55	Evaluation of baseflow modelling structure in monthly water balance models using 443 Australian catchments. Journal of Hydrology, 2020, 591, 125572.	2.3	16
56	Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China. Energy, 2021, 236, 121519.	4.5	16
57	Impacts of the Three Gorges Dam on the streamflow fluctuations in the downstream region. Journal of Hydrology, 2021, 598, 126480.	2.3	15
58	Classification-Based Spatiotemporal Variations of Pan Evaporation Across the Guangdong Province, South China. Water Resources Management, 2015, 29, 901-912.	1.9	14
59	Determining dynamic water level control boundaries for a multiâ€reservoir system during flood seasons with considering channel storage. Journal of Flood Risk Management, 2020, 13, e12586.	1.6	13
60	An Analytical Baseflow Coefficient Curve for Depicting the Spatial Variability of Mean Annual Catchment Baseflow. Water Resources Research, 2021, 57, e2020WR029529.	1.7	13
61	Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter. Applied Energy, 2021, 301, 117482.	5.1	13
62	Quantifying the effects of elevated CO ₂ on water budgets by combining FACE data with an ecohydrological model. Ecohydrology, 2014, 7, 1574-1588.	1.1	12
63	Responses of LAI to rainfall explain contrasting sensitivities to carbon uptake between forest and non-forest ecosystems in Australia. Scientific Reports, 2017, 7, 11720.	1.6	12
64	Improving Runoff Prediction Using Remotely Sensed Actual Evapotranspiration during Rainless Periods. Journal of Hydrologic Engineering - ASCE, 2019, 24, 04019050.	0.8	11
65	Management of vegetative land for more water yield under future climate conditions in the over-utilized water resources regions: A case study in the Xiong'an New area. Journal of Hydrology, 2021, 600, 126563.	2.3	11
66	Detecting and quantifying the impact of long-term terrestrial water storage changes on the runoff ratio in the head regions of the two largest rivers in China. Journal of Hydrology, 2021, 601, 126668.	2.3	11
67	Diagnosing structural deficiencies of a hydrological model by time-varying parameters. Journal of Hydrology, 2022, 605, 127305.	2.3	11
68	Reply to comment by Jozsef Szilagyi on "Assessing interannual variability of evapotranspiration at the catchment scale using satelliteâ€based evapotranspiration data sets― Water Resources Research, 2012, 48, .	1.7	10
69	Quantifying the Impacts of Climate Change and Vegetation Variation on Actual Evapotranspiration Based on the Budyko Hypothesis in North and South Panjiang Basin, China. Water (Switzerland), 2020, 12, 508.	1.2	10
70	Vegetation greening concurs with increases in dry season water yield over the Upper Brahmaputra River basin. Journal of Hydrology, 2021, 603, 126981.	2.3	10
71	The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective. Hydrology and Earth System Sciences, 2020, 24, 4369-4387.	1.9	10
72	Reducing the uncertainty of time-varying hydrological model parameters using spatial coherence within a hierarchical Bayesian framework. Journal of Hydrology, 2019, 577, 123927.	2.3	9

#	Article	IF	CITATIONS
73	A Climatic Perspective on the Impacts of Global Warming on Water Cycle of Cold Mountainous Catchments in the Tibetan Plateau: A Case Study in Yarlung Zangbo River Basin. Water (Switzerland), 2020, 12, 2338.	1.2	9
74	Effect of GCM credibility on water resource system robustness under climate change based on decision scaling. Advances in Water Resources, 2021, 158, 104063.	1.7	9
75	Investigating the downstream sediment load change by an index coupling effective rainfall information with reservoir sediment trapping capacity. Journal of Hydrology, 2020, 590, 125200.	2.3	7
76	Optimizing the Reservoir Operation for Hydropower Generation by Using the Flexibility Index to Consider Inflow Uncertainty. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	7
77	Integrating teleconnection factors into long-term complementary operating rules for hybrid power systems: A case study of Longyangxia hydro-photovoltaic plant in China. Renewable Energy, 2022, 186, 517-534.	4.3	7
78	Evaluation of changes in streamflow and the underlying causes: a perspective of an upstream catchment in Haihe River basin, China. Journal of Water and Climate Change, 2020, 11, 241-257.	1.2	6
79	Network analysis of the food–energy–water nexus in China's Yangtze River Economic Belt from a synergetic perspective. Environmental Research Letters, 2021, 16, 054001.	2.2	6
80	Resilience analysis of the nexus across water supply, power generation and environmental systems from a stochastic perspective. Journal of Environmental Management, 2021, 289, 112513.	3.8	6
81	Immune-related effects of compound astragalus polysaccharide and sulfated epimedium polysaccharide on newborn piglets. Animal Biotechnology, 2021, , 1-12.	0.7	5
82	Baseflow signature behaviour of mountainous catchments around the North China Plain. Journal of Hydrology, 2022, 606, 127450.	2.3	5
83	Representing Irrigation Processes in the Land Surfaceâ€Hydrological Model and a Case Study in the Yangtze River Basin, China. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	5
84	The temporal variations in runoff-generation parameters of the Xinanjiang model due to human activities: A case study in the upper Yangtze River Basin, China. Journal of Hydrology: Regional Studies, 2021, 37, 100910.	1.0	4
85	Investigating the spatial variability of water security risk and its driving mechanisms in China using machine learning. Journal of Cleaner Production, 2022, 362, 132303.	4.6	4
86	A new joint optimization method for design and operation of multi-reservoir system considering the conditional value-at-risk. Journal of Hydrology, 2022, 610, 127946.	2.3	4
87	Research on path planning of family nursing robot based on robot operating system. , 2016, , .		3
88	Detecting and attributing droughtâ€induced changes in catchment hydrological behaviours in a southeastern Australia catchment using a data assimilation method. Hydrological Processes, 2021, 35, e14289.	1.1	3
89	Land surface models significantly underestimate the impact of land-use changes on global evapotranspiration. Environmental Research Letters, 2021, 16, 124047.	2.2	3
90	Extracting operation behaviors of cascade reservoirs using physics-guided long-short term memory networks. Journal of Hydrology: Regional Studies, 2022, 40, 101034.	1.0	3

#	Article	IF	CITATIONS
91	The Dependence of Ecosystem Water Use Partitioning on Vegetation Productivity at the Interâ€Annual Time Scale. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033756.	1.2	1
92	Identification of Soil Moisture–Precipitation Feedback Based on Temporal Information Partitioning Networks. Journal of the American Water Resources Association, 0, , .	1.0	1