
Dieter Vollhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4931950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphology and phase behavior of monolayers. Advances in Colloid and Interface Science, 1996, 64, 143-171.	7.0	192
2	Effect of Molecular Chirality on the Morphology of Biomimetic Langmuir Monolayers. Chemical Reviews, 2003, 103, 4033-4076.	23.0	185
3	Equations of State for Langmuir Monolayers with Two-Dimensional Phase Transitions. Journal of Physical Chemistry B, 1999, 103, 145-150.	1.2	112
4	Phase Transition in Adsorption Layers at the Airâ^'Water Interface:Â Bridging to Langmuir Monolayers. Journal of Physical Chemistry B, 1997, 101, 3370-3375.	1.2	100
5	Formation of Condensed Phase Patterns in Adsorption Layers. Physical Review Letters, 1996, 76, 3770-3773.	2.9	95
6	Thermodynamic and Textural Characterization of DPPG Phospholipid Monolayers. Journal of Physical Chemistry B, 2000, 104, 4115-4121.	1.2	90
7	Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers. Advances in Colloid and Interface Science, 2000, 86, 103-151.	7.0	84
8	Brewster angle microscopy: A preferential method for mesoscopic characterization of monolayers at the air/water interface. Current Opinion in Colloid and Interface Science, 2014, 19, 183-197.	3.4	84
9	Dynamic and Equilibrium Surface Pressure of Adsorbed Dodecanol Monolayers at the Air/Water Interface. Journal of Physical Chemistry B, 2000, 104, 8536-8543.	1.2	82
10	Relating Lattice and Domain Structures of Monoglyceride Monolayers. The Journal of Physical Chemistry, 1995, 99, 8758-8762.	2.9	80
11	Long-range tilt orientational order in phospholipid monolayers: a comparative study. Biophysical Journal, 1996, 70, 2758-2766.	0.2	79
12	Long range tilt orientational order in phospholipid monolayers: a comparison of the order in the condensed phases of dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidylcholine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100, 187-202.	2.3	77
13	Equation of State for Insoluble Monolayers of Aggregating Amphiphilic Molecules. The Journal of Physical Chemistry, 1996, 100, 15478-15482.	2.9	74
14	Characterisation of phase transition in adsorbed monolayers at the air/water interface. Advances in Colloid and Interface Science, 2010, 154, 1-19.	7.0	71
15	Morphological Features in 1-Monoglyceride Monolayers. Journal of Colloid and Interface Science, 1995, 174, 392-399.	5.0	70
16	Similarities in the Phase Properties of Gibbs and Langmuir Monolayers. Journal of Physical Chemistry B, 1998, 102, 591-597.	1.2	66
17	Temperature-dependent studies of the phase behaviour of 1-monostearoyl-rac-glycerol monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 76, 187-195.	2.3	62
18	Inner Structure of Condensed Phase Domains in Monolayers at the Air-Water Interface. Langmuir, 1995, 11, 864-871.	1.6	58

#	Article	IF	CITATIONS
19	Nonequilibrium Structures in 1-Monopalmitoyl-rac-glycerol Monolayers. Langmuir, 1997, 13, 277-282.	1.6	58
20	Chiral Discrimination in Monolayers of Monoglycerides. Langmuir, 1996, 12, 4892-4896.	1.6	53
21	Coadsorption of sodium dodecyl sulfate and medium-chain alcohols at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 161, 173-182.	2.3	53
22	Disorder in Langmuir Monolayers. 1. Disordered Packing of Alkyl Chains. Langmuir, 1998, 14, 6485-6492.	1.6	49
23	Dynamics and Phase Transition in Adsorbed Monolayers of Sodium Dodecyl Sulfate/Dodecanol Mixtures. Journal of Physical Chemistry B, 2001, 105, 4324-4330.	1.2	49
24	Quantum Chemical Analysis of the Thermodynamics of 2D Cluster Formation of Oddn-Alcohols at the Air/Water Interface. Journal of Physical Chemistry B, 2002, 106, 11285-11294.	1.2	46
25	Dendritic Crystal Growth in N-Dodecylgluconamide Monolayers at the Air-Water Interface. Langmuir, 1995, 11, 2661-2668.	1.6	45
26	Structure formation and phase transitions in Gibbs and Langmuir monolayers of amphiphilic acid amides. Physical Review E, 1998, 57, 901-907.	0.8	45
27	Phase Transition in Adsorbed Monolayers of Sodium Dodecyl Sulfate/Dodecanol Mixtures. Journal of Physical Chemistry B, 2001, 105, 12061-12067.	1.2	45
28	Texture features of long-chain fatty acid monolayers at high pH of the aqueous subphase. Materials Science and Engineering C, 1999, 8-9, 35-42.	3.8	44
29	Brewster Angle Microscopy and X-ray GID Studies of Morphology and Crystal Structure in Monolayers of N-Tetradecyl-γ,δ-dihydroxypentanoic Acid Amide. Journal of Physical Chemistry B, 1997, 101, 4752-4758.	1.2	43
30	Effect of Unsaturation in Fatty Acids on the Main Characteristics of Langmuir Monolayers. Journal of Physical Chemistry C, 2007, 111, 6805-6812.	1.5	43
31	Relating Domain Morphology and Lattice Structure in Monolayers of Glycerol Amide Lipids. Langmuir, 1998, 14, 2112-2118.	1.6	40
32	Molecular Interactions in Amphiphilic Assemblies: Theoretical Perspective. Accounts of Chemical Research, 2007, 40, 351-360.	7.6	40
33	Effects of dodecanol on the adsorption kinetics of SDS at the water–hexane interface. Journal of Colloid and Interface Science, 2010, 351, 537-541.	5.0	40
34	Quantum Chemical Analysis of the Thermodynamics of 2D Cluster Formation ofn-Carboxylic Acids at the Air/Water Interface. Journal of Physical Chemistry B, 2006, 110, 4717-4730.	1.2	38
35	Quantum Chemical Analysis of Thermodynamics of the Two-Dimensional Cluster Formation at the Air/Water Interface. Journal of Physical Chemistry B, 2002, 106, 121-131.	1.2	37
36	Kinetics of two-dimensional phase transition of amphiphilic monolayers at the air/water interface. Journal of Chemical Physics, 1997, 107, 243-251.	1.2	36

#	Article	IF	CITATIONS
37	Characteristic Features of Hydroxystearic Acid Monolayers at the Air/Water Interface. Journal of Physical Chemistry B, 2004, 108, 17448-17456.	1.2	34
38	Chiral Discrimination Effects in Langmuir Monolayers:Â Monolayers of Palmitoyl Aspartic Acid,N-Stearoyl Serine Methyl Ester, andN-Tetradecyl-γ,Π-dihydroxypentanoic Acid Amide. Journal of Physical Chemistry B, 2003, 107, 3464-3475.	1.2	33
39	Arachidic Acid Monolayers at High pH of the Aqueous Subphase:Â Studies of Counterion Bonding. Langmuir, 2000, 16, 7731-7736.	1.6	32
40	Chiral Discrimination Effects in Langmuir Monolayers of 1-O-Hexadecyl Glycerol. Journal of Physical Chemistry B, 2004, 108, 327-335.	1.2	31
41	Effect of isomeric alcohols as a minor component on the adsorption properties of aqueous sodium alkyl sulfate solutions. Langmuir, 1990, 6, 317-322.	1.6	30
42	Thermally Induced Domain Growth in Fatty Acid Ester Monolayers. Journal of Colloid and Interface Science, 1995, 173, 429-435.	5.0	30
43	Long Range Tilt Orientational Order in Fatty Acid Ethyl Ester Monolayers. Langmuir, 1996, 12, 5114-5119.	1.6	30
44	Role of Electrostatic Interactions for the Domain Shapes of Langmuir Monolayers of Monoglycerol Amphiphiles. Journal of Physical Chemistry B, 2005, 109, 10820-10829.	1.2	30
45	Quantum Chemical Analysis of the Thermodynamics of 2-Dimensional Cluster Formation of Alkylamines at the Air/Water Interface. Journal of Physical Chemistry C, 2007, 111, 15342-15349.	1.5	30
46	Comparing Molecular Packing and Textures of Langmuir Monolayers of Fatty Acids and Their Methyl and Ethyl Esters. Journal of Physical Chemistry B, 1998, 102, 148-153.	1.2	29
47	Shifting of Fatty Acid Monolayer Phases Due to Ionization of the Headgroups. Langmuir, 2001, 17, 4569-4580.	1.6	29
48	The phase behavior of an ether lipid monolayer compared with an ester lipid monolayer. , 1994, , 302-306.		28
49	Atomic Force Microscopy Study of the Texture of Condensed Phase Domains in 1-Monostearoylglycerol Monolayers. Langmuir, 1998, 14, 1815-1821.	1.6	28
50	Chiral Discrimination in 1-Stearylamine-Glycerol Monolayers. Journal of Physical Chemistry B, 2002, 106, 4419-4423.	1.2	28
51	Quantum chemical semi-empirical approach to the thermodynamic characteristics of oligomers and large aggregates of alcohols at the water/air interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 209, 1-14.	2.3	28
52	Nonequilibrium Domain Growth in Fatty Acid Ethyl Ester Monolayers. Langmuir, 1997, 13, 1623-1628.	1.6	27
53	Quantum Chemical Semiempirical Approach to the Structural and Thermodynamic Characteristics of Fluoroalkanols at the Air/Water Interface. Journal of Physical Chemistry B, 2005, 109, 454-462.	1.2	27
54	Zur Herstellung und Charakterisierung von erenzflÃ e henchemisch reinem Natrium-dodecylsuliat. Tenside, Surfactants, Detergents, 1981, 18, 320-327.	0.5	27

4

#	Article	IF	CITATIONS
55	Microscopic study of chiral interactions in langmuir monolayer: monolayers of N-palmitoyl aspartic acid and N-stearoyl serine methyl ester. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183-185, 67-83.	2.3	26
56	Molecular Origin of the Chiral Interaction in Biomimetic Systems:Â Dipalmitoylphosphatidylcholine Langmuir Monolayer. Journal of Physical Chemistry B, 2002, 106, 10144-10149.	1.2	26
57	Prediction of the handedness of the chiral domains of amphiphilic monolayers: monolayers of amino acid amphiphiles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 207-221.	2.3	26
58	Interfacial Molecular Recognition of Dissolved Thymine by Medium Chain Dialkyl Melamine-Type Monolayers. Journal of Physical Chemistry B, 2005, 109, 10849-10857.	1.2	26
59	Quantum-Chemical Analysis of Thermodynamics of Two-Dimensional Cluster Formation of α-Amino Acids at the Air/Water Interface. Journal of Physical Chemistry B, 2009, 113, 16557-16567.	1.2	26
60	Nanoaggregate shapes at the air/water interface. Physical Chemistry Chemical Physics, 2011, 13, 4812.	1.3	26
61	Influence of small quantities of isomeric alcohols on the surface tension behavior of aqueous sodium alkyl sulfate solutions. Colloids and Surfaces, 1984, 11, 209-217.	0.9	25
62	Structure features and phase behaviour of amphiphilic N-tetradecyl-β-hydroxy-propionic acid amide monolayers. Supramolecular Science, 1997, 4, 391-397.	0.7	25
63	Quantum Chemical Analysis of Thermodynamics of 2D Cluster Formation of n-Thioalcohols at the Air/Water Interface. Journal of Physical Chemistry C, 2007, 111, 5374-5381.	1.5	25
64	Molecular Packing and Textures of 1-Stearylamine-rac-glycerol Monolayers. Langmuir, 2002, 18, 688-693.	1.6	24
65	Thermodynamic and Structural Characterization of Amphiphilic Melamine-type Monolayers. Journal of Physical Chemistry B, 2005, 109, 11706-11711.	1.2	24
66	Surface p <i>K</i> _a of Saturated Carboxylic Acids at the Air/Water Interface: A Quantum Chemical Approach. Journal of Physical Chemistry C, 2020, 124, 13809-13818.	1.5	24
67	Structural effect on the adsorption properties of aqueous solutions of straight-chain and cyclic dodecyl sulfates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 76, 217-225.	2.3	23
68	Phase Transition in Monolayers of Straight Chain and 2-Methyl Branched Alcohols at the Airâ^'Water Interface. Langmuir, 2002, 18, 6571-6577.	1.6	23
69	Effect of Hydroxyl Group Position and System Parameters on the Features of Hydroxystearic Acid Monolayers. Langmuir, 2004, 20, 7670-7677.	1.6	23
70	Surface Pressure Isotherm for the Fluid State of Langmuir Monolayers. Journal of Physical Chemistry B, 2006, 110, 10436-10440.	1.2	23
71	Monolayer Characteristics of a Long-Chain N,O-Diacyl Substituted Ethanolamine at the Air/Water Interface. Langmuir, 2011, 27, 5386-5392.	1.6	23
72	Quantum Chemical Analysis of the Thermodynamics of 2D Cluster Formation of Aliphatic Amides at the Air/Water Interface. Journal of Physical Chemistry C, 2012, 116, 26358-26376.	1.5	23

#	Article	IF	CITATIONS
73	Anomalous Temperature Dependence of Domain Shape in Langmuir Monolayers:Â Role of Dipolar Interaction. Journal of Physical Chemistry B, 2004, 108, 18793-18795.	1.2	22
74	Thermodynamics of the Clusterization Process of <i>Cis</i> Isomers of Unsaturated Fatty Acids at the Air/Water Interface. Journal of Physical Chemistry B, 2009, 113, 4347-4359.	1.2	22
75	Correlation between the microscopic and mesoscopic chirality in Langmuir monolayers. Thin Solid Films, 2003, 433, 12-21.	0.8	21
76	Characteristic Features of Amphiphilic P-Functionalized Calixarene Monolayers at the Air/Water Interface. Langmuir, 2003, 19, 4228-4234.	1.6	21
77	Structural Features of Mixed Monolayers of Oleanolic Acid and Stearic Acid. Journal of Physical Chemistry C, 2008, 112, 15777-15783.	1.5	21
78	Quantum-Chemical Analysis of Thermodynamics of Two-Dimensional Cluster Formation of Racemic α-Amino Acids at the Air/Water Interface. Journal of Physical Chemistry B, 2011, 115, 2264-2281.	1.2	21
79	Line tension and domain shapes in insoluble monolayers of fatty alcohols. Thin Solid Films, 1996, 284-285, 424-427.	0.8	20
80	On Hexagonal Orientation of Fatty Alcohols in Monolayers at the Air/Water Interface: Quantum-Chemical Approach. Journal of Physical Chemistry C, 2014, 118, 4122-4130.	1.5	20
81	Kinetics of Two-Dimensional Phase Transition of Langmuir Monolayers. Journal of Physical Chemistry B, 2002, 106, 345-351.	1.2	19
82	Effect of the Exchange of Substituent Position in an Amide Amphiphile on the Monolayer Characteristics. Journal of Physical Chemistry B, 2006, 110, 14881-14889.	1.2	19
83	Quantum-Chemical Description of the Thermodynamic Characteristics of Clusterization of Melamine-type Amphiphiles at the Air/Water Interface. Journal of Physical Chemistry B, 2009, 113, 13235-13248.	1.2	19
84	Phase transitions in adsorption layers: comparison with Langmuir monolayers. Progress in Colloid and Polymer Science, 1997, 105, 130-137.	0.5	18
85	Phase Transitions and Structures in Monolayers of Water Soluble and Insoluble Amphiphilic Acid Amides. Chemical Engineering and Technology, 1998, 21, 44-48.	0.9	16
86	Mixed Stearoyl-rac-glycerol/12-(Hydroxy)stearoyl-rac-glycerol Monolayers on the Air/Water Interface:Â Brewster Angle Microscopy and Grazing Incidence X-ray Diffraction Investigation. Journal of Physical Chemistry B, 2000, 104, 8704-8711.	1.2	16
87	Recognition and Dissociation Kinetics in the Interfacial Molecular Recognition of Barbituric Acid by Amphiphilic Melamine-Type Monolayers. Journal of Physical Chemistry B, 2007, 111, 8283-8289.	1.2	16
88	Monolayer Characteristics of an N-Acylated Ethanolamine at the Air/Water Interface. Journal of Physical Chemistry C, 2011, 115, 8206-8213.	1.5	16
89	Quantum chemical analysis of the thermodynamics of 2D cluster formation of 2-hydroxycarboxylic acids at the air/water interface. Soft Matter, 2013, 9, 7601.	1.2	16
90	The quantum-chemical approach to calculations of thermodynamic and structural parameters of formation of fatty acid monolayers with hexagonal packing at the air/water interface. Physical Chemistry Chemical Physics, 2014, 16, 3187.	1.3	16

#	Article	IF	CITATIONS
91	Phase transition in adsorption layers at the air–water interface: structure features of the condensed phase. Thin Solid Films, 1998, 327-329, 842-845.	0.8	15
92	Structure Features and Phase Behavior of 1-(12-Hydroxy)stearoyl-rac-glycerol Monolayers. Journal of Physical Chemistry B, 2004, 108, 3781-3788.	1.2	15
93	Model Studies of the Interfacial Ordering of Oleanolic Acid in the Cuticula. ChemPhysChem, 2008, 9, 1670-1672.	1.0	15
94	Temperature Effect on the Monolayer Formation of Substituted Alkanes at the Air/Water Interface: A Quantum Chemical Approach. Journal of Physical Chemistry B, 2012, 116, 8996-9006.	1.2	15
95	Monolayer Characteristics of 1-Monostearoyl- <i>rac</i> -glycerol at the Air–Water Interface. Journal of Physical Chemistry C, 2015, 119, 9934-9946.	1.5	15
96	Simplified method of the quantum chemical analysis for determination of thermodynamic parameters of 2D cluster formation of amphiphilic compounds at the air/water interface. Journal of Colloid and Interface Science, 2008, 326, 339-346.	5.0	14
97	Equation of State for the Phase Coexistence Region of Insoluble Monolayers under Consideration of the Entropy Nonideality. Journal of Physical Chemistry B, 2008, 112, 1477-1481.	1.2	14
98	Grazing Incidence Diffraction and Brewster-Angle Microscope Studies of Mixtures of Hexadecanoic Acid and Methyl Hexadecanoate:  The Unexpected Appearance of a Phase with Nearest-Neighbor Tilt. Journal of Physical Chemistry B, 2000, 104, 10053-10058.	1.2	13
99	Thermodynamics of the Clusterization Process of <i>trans</i> -Isomers of Unsaturated Fatty Acids at the Air/Water Interface. Journal of Physical Chemistry B, 2012, 116, 2173-2182.	1.2	13
100	Phase Characteristics of 1-Monopalmitoyl- <i>rac</i> -glycerol Monolayers at the Air/Water Interface. Langmuir, 2016, 32, 7316-7325.	1.6	13
101	Cross-Sectional Area Increase at Phase Transition on Compression: An Unexpected Phenomenon Observed in an Amide Monolayer. Journal of Physical Chemistry C, 2010, 114, 15695-15702.	1.5	11
102	Transition State for Aggregation and Reorganization of Normal Fatty Alcohols at the Air/Water Interface. Journal of Physical Chemistry B, 2004, 108, 8330-8337.	1.2	10
103	Equation of State for Monolayers with Additional Phase Transition between Condensed Phases of Different Compressibility. Journal of Physical Chemistry B, 2009, 113, 6311-6313.	1.2	10
104	A quantum chemical model for assessment of the temperature dependence in monolayer formation of amphiphiles at the air/water interface. Physical Chemistry Chemical Physics, 2013, 15, 11623.	1.3	10
105	Effect of chirality on monoacylglycerol ester monolayer characteristics: 3-Monopalmitoyl- sn -glycerol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 281-293.	2.3	10
106	Relationship between the Bulk and Surface Basicity of Aliphatic Amines: A Quantum Chemical Approach. ACS Omega, 2020, 5, 32032-32039.	1.6	10
107	Texture Change Separate from the Transition between Two Tilted Phases in Langmuir Monolayers. Journal of Physical Chemistry B, 1998, 102, 1224-1228.	1.2	9
108	On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach. Physical Chemistry Chemical Physics, 2013, 15, 2159.	1.3	9

#	Article	IF	CITATIONS
109	Special features of monolayer characteristics of <i>N</i> -alkanoyl substituted threonine amphiphiles. Physical Chemistry Chemical Physics, 2019, 21, 96-103.	1.3	9
110	Thermodynamics of two-dimensional cluster formation at the water/air interface. A quantum chemical approach. , 2002, , 72-75.		9
111	Morphology and growth of condensed phase structures in N-alkyl-aldonamide monolayers using brewster angle microscopy. , 1995, , 266-268.		8
112	Ordering in Langmuir monolayers of branched chain phospholipids. Materials Science and Engineering C, 1999, 8-9, 3-11.	3.8	8
113	Morphology and phase behaviour of monoglyceride monolayers on aqueous sugar substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 171, 49-57.	2.3	8
114	Molecular pair potential of chiral amino acid amphiphile in Langmuir monolayers on the basis of an atomistic model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 279-287.	2.3	8
115	Chiral Discrimination in Stearoyl Amine Glycerol Monolayers. Langmuir, 2008, 24, 9489-9494.	1.6	8
116	Quantization of the Molecular Tilt Angle of Amphiphile Monolayers at the Air/Water Interface. Journal of Physical Chemistry C, 2015, 119, 5523-5533.	1.5	8
117	Theoretical description of 2D-cluster formation of nonionic surfactants at the air/water interface. Colloid and Polymer Science, 2015, 293, 3065-3089.	1.0	7
118	Effect of chirality on monoacylglycerol ester monolayer characteristics: 3-monostearoyl- <i>sn</i> -glycerol. Physical Chemistry Chemical Physics, 2017, 19, 7009-7024.	1.3	7
119	Alkanolspuren in Natriumalkylsulfaten: Nachweis und Bedeutung für die Adsorptionseigenschaften/ Alkanol Traces in Sodium Alkyl Sulfates: Detection and Importance forthe Adsorption Properties. Tenside, Surfactants, Detergents, 1993, 30, 349-355.	0.5	7
120	Dominance of long-chain N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391, 2-9.	2.3	6
121	Helfrich's concept of intrinsic force and its molecular origin in bilayers and monolayers. Advances in Colloid and Interface Science, 2014, 208, 110-120.	7.0	6
122	Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols. Physical Chemistry Chemical Physics, 2015, 17, 28901-28920.	1.3	6
123	Quantum-chemical analysis of condensed monolayer phases of N-alkanoyl-substituted alanine at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 346-359.	2.3	6
124	Analysis of Temperature and Alkyl Chain Length Impacts on the Morphological Peculiarities of Nonionic Surfactant Clusterization. A Quantum Chemical Approach. Journal of Physical Chemistry C, 2015, 119, 18404-18413.	1.5	5
125	Effect of the Alkanoyl Group Position at the Glycerol Backbone on the Monolayer Characteristics Demonstrated by 2-Monopalmitoyl- <i>rac</i> -glycerol. Langmuir, 2017, 33, 12559-12568.	1.6	5
126	Theoretical Description of Mixed Film Formation at the Air/Water Interface: Carboxylic Acids–Alcohols. ACS Omega, 2018, 3, 16693-16705.	1.6	5

#	Article	IF	CITATIONS
127	Mesoscopic characterization of amphiphilic monoglycerol monolayers. Advances in Colloid and Interface Science, 2018, 258, 36-46.	7.0	5
128	Adsorption kinetic characterization of the effect of surface-active trace components in aqueous solutions of surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 76, 203-215.	2.3	4
129	Two-Dimensional Miscibility Behavior of Two Chemically Similar Amide Amphiphiles. Journal of Physical Chemistry C, 2012, 116, 6268-6274.	1.5	4
130	Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific Characteristics of the condensed phases. Advances in Colloid and Interface Science, 2015, 222, 728-742.	7.0	4
131	Quantum-chemical analysis of hexagonal crystalline monolayers of ethoxylated nonionic surfactants at the air/water interface. Physical Chemistry Chemical Physics, 2014, 16, 25129-25142.	1.3	3
132	Theoretical Description of Mixed Film Formation at the Air/Water Interface: Carboxylic Acids–Fatty Amines. Journal of Physical Chemistry C, 2020, 124, 1544-1553.	1.5	3
133	Influence of Stereochemistry on the Monolayer Characteristics of <i>N</i> -alkanoyl-Substituted Threonine and Serine Amphiphiles at the Air–Water Interface. Langmuir, 2021, 37, 9069-9077.	1.6	3
134	Superposition-additive approach in the description of thermodynamic parameters of formation and clusterization of substituted alkanes at the air/water interface. Journal of Colloid and Interface Science, 2012, 387, 162-174.	5.0	2
135	Synchrotron-Based X-ray Methods as Powerful Tools for the Characterization of Monolayers at the Air/Liquid Interface. ACS Symposium Series, 2015, , 377-419.	0.5	2
136	Lattice structures and phase behavior of amphiphilic monoglycerol monolayers. Advances in Colloid and Interface Science, 2019, 273, 102030.	7.0	2
137	Influence of linkage type (ether or ester) on the monolayer characteristics of single-chain glycerols at the air–water interface. Physical Chemistry Chemical Physics, 2020, 22, 23207-23214.	1.3	2
138	Lattice and thermodynamic characteristics of <i>N</i> -stearoyl-allo-threonine monolayers. Physical Chemistry Chemical Physics, 2020, 22, 2783-2791.	1.3	2
139	Quantum chemical assessment of the molecular area corresponding to the onset of the LE–LC phase transition for amphiphilic 2D monolayers at the air/water interface. Physical Chemistry Chemical Physics, 2021, 23, 25356-25364.	1.3	2
140	Molecular area dependences of monolayers at the air/water interface. Jcis Open, 2022, 7, 100057.	1.5	2
141	Phasenübergäge und Strukturen von Monoschichten wasserlöslicher und wasserunlöslicher amphiphiler SA¤reamide. Chemie-Ingenieur-Technik, 1998, 70, 275-279.	0.4	1
142	Quantum chemical clarification of the alkyl chain length threshold of nonionic surfactants for monolayer formation at the air/water interface. Physical Chemistry Chemical Physics, 2016, 18, 7932-7937.	1.3	1