James A White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4931945/publications.pdf

Version: 2024-02-01

75 papers	2,472 citations	24 h-index	214800 47 g-index
76	76	76	3336
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Delayed Enhancement Magnetic Resonance Imaging Predicts Response to Cardiac Resynchronization Therapy in Patients With Intraventricular Dyssynchrony. Journal of the American College of Cardiology, 2006, 48, 1953-1960.	2.8	348
2	Late Gadolinium Enhancement and theÂRisk for Ventricular Arrhythmias or SuddenÂDeath in Dilated Cardiomyopathy. JACC: Heart Failure, 2017, 5, 28-38.	4.1	262
3	Prediction of Arrhythmic Events in Ischemic and Dilated Cardiomyopathy Patients Referred for Implantable Cardiac Defibrillator. Circulation: Cardiovascular Imaging, 2012, 5, 448-456.	2.6	183
4	CMR Imaging With Rapid Visual T1 Assessment Predicts Mortality in Patients Suspected of Cardiac Amyloidosis. JACC: Cardiovascular Imaging, 2014, 7, 143-156.	5.3	116
5	Utility of Cardiovascular Magnetic Resonance in Identifying Substrate for Malignant Ventricular Arrhythmias. Circulation: Cardiovascular Imaging, 2012, 5, 12-20.	2.6	107
6	Active Cardiac Sarcoidosis. Circulation, 2013, 127, e639-41.	1.6	84
7	Prevalence of Myocardial Fibrosis Patterns in Patients With Systolic Dysfunction. Circulation: Cardiovascular Imaging, 2014, 7, 593-600.	2.6	81
8	Accuracy and reproducibility of semi-automated late gadolinium enhancement quantification techniques in patients with hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 85.	3.3	76
9	Prognostic Value of Late Gadolinium Enhancement for the Prediction of Cardiovascular Outcomes in Dilated Cardiomyopathy. Circulation: Cardiovascular Imaging, 2020, 13, e010105.	2.6	60
10	Interactive Hierarchical-Flow Segmentation of Scar Tissue From Late-Enhancement Cardiac MR Images. IEEE Transactions on Medical Imaging, 2014, 33, 159-172.	8.9	57
11	Prognostic Value of Right Ventricular Strain Using Speckle-Tracking Echocardiography in Pulmonary Hypertension: AÂSystematic Review and Meta-analysis. Canadian Journal of Cardiology, 2018, 34, 1069-1078.	1.7	54
12	The Role of Cardiovascular MRI in Heart Failure and the Cardiomyopathies. Cardiology Clinics, 2007, 25, 71-95.	2.2	51
13	Influence of Pacing Site Characteristics on Response to Cardiac Resynchronization Therapy. Circulation: Cardiovascular Imaging, 2013, 6, 542-550.	2.6	47
14	Clinical Experience With the Use of Doxycycline and Ursodeoxycholic Acid for the Treatment of Transthyretin Cardiac Amyloidosis. Journal of Cardiac Failure, 2019, 25, 147-153.	1.7	44
15	Convolutional neural networkâ€based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement <scp>MR</scp> images. Medical Physics, 2019, 46, 1740-1751.	3.0	44
16	Imageâ€based reconstruction of threeâ€dimensional myocardial infarct geometry for patientâ€specific modeling of cardiac electrophysiology. Medical Physics, 2015, 42, 4579-4590.	3.0	38
17	Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography. International Journal of Cardiovascular Imaging, 2017, 33, 1979-1992.	1.5	37
18	Fused Whole-Heart Coronary and Myocardial Scar Imaging Using 3-T CMR. JACC: Cardiovascular Imaging, 2010, 3, 921-930.	5.3	33

#	Article	IF	Citations
19	The Prognostic Role of Late Gadolinium Enhancement Magnetic Resonance Imaging in Patients With Cardiomyopathy. Canadian Journal of Cardiology, 2013, 29, 329-336.	1.7	32
20	Validation of subâ€segmental visual scoring for the quantification of ischemic and nonischemic myocardial fibrosis using late gadolinium enhancement MRI. Journal of Magnetic Resonance Imaging, 2013, 38, 1369-1376.	3.4	32
21	Objective criteria for septal fibrosis in non-ischemic dilated cardiomyopathy: validation for the prediction of future cardiovascular events. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 82.	3.3	32
22	Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multiâ€planar Uâ€Net (CMPUâ€Net). Medical Physics, 2020, 47, 1645-1655.	3.0	32
23	Right Ventricular Ejection Fraction Is Incremental to Left Ventricular Ejection Fraction for the Prediction of Future Arrhythmic Events in Patients With Systolic Dysfunction. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	31
24	Stress Hypoperfusion and Tissue Injury in Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2013, 6, 229-238.	2.6	26
25	Natural History of Myocardial Injury and Chamber Remodeling in Acute Myocarditis. Circulation: Cardiovascular Imaging, 2019, 12, e008614.	2.6	25
26	Acellular bioscaffolds redirect cardiac fibroblasts and promote functional tissue repair in rodents and humans with myocardial injury. Scientific Reports, 2020, 10, 9459.	3.3	23
27	High-resolution 3-dimensional late gadolinium enhancement scar imaging in surgically corrected Tetralogy of Fallot: clinical feasibility of volumetric quantification and visualization. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 76.	3.3	21
28	Characterization of Right Ventricular Deformation in Pulmonary Arterial Hypertension Using Three-Dimensional Principal Strain Analysis. Journal of the American Society of Echocardiography, 2019, 32, 385-393.	2.8	21
29	Right Ventricular Ejection Fraction for the Prediction of Major Adverse Cardiovascular and Heart Failure-Related Events. Circulation: Cardiovascular Imaging, 2021, 14, e011337.	2.6	21
30	Model-Based Navigation of Left and Right Ventricular Leads to Optimal Targets for Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 1040-1047.	4.8	20
31	Comparison of semi-automated scar quantification techniques using high-resolution, 3-dimensional late-gadolinium-enhancement magnetic resonance imaging. International Journal of Cardiovascular Imaging, 2015, 31, 349-357.	1.5	20
32	Comparison of Cardiac Magnetic Resonance Imaging and Echocardiography in Assessment of Left Ventricular Hypertrophy in Fabry Disease. Canadian Journal of Cardiology, 2018, 34, 1041-1047.	1.7	19
33	OUTSMART HF. Circulation, 2020, 141, 818-827.	1.6	19
34	Effect of Active Cancer on the Cardiac Phenotype: A Cardiac Magnetic Resonance Imagingâ€Based Study of Myocardial Tissue Health and Deformation in Patients With Chemotherapyâ€NaÃ⁻ve Cancer. Journal of the American Heart Association, 2021, 10, e019811.	3.7	19
35	Rapid Response to Cytokine Storm Inhibition Using Anakinra in a Patient With COVID-19 Myocarditis. CJC Open, 2021, 3, 210-213.	1.5	18
36	Iron-Sensitive Cardiac Magnetic Resonance Imaging for Prediction of Ventricular Arrhythmia Risk in Patients With Chronic Myocardial Infarction. Circulation: Cardiovascular Imaging, 2015, 8, .	2.6	17

#	Article	IF	CITATIONS
37	Recent Advances in Cardiovascular Imaging Relevant to the Management of Patients with Suspected Cardiac Amyloidosis. Current Cardiology Reports, 2016, 18, 77.	2.9	16
38	3-Dimensional regional and global strain abnormalities in hypertrophic cardiomyopathy. International Journal of Cardiovascular Imaging, 2019, 35, 1913-1924.	1.5	16
39	The Role of Cardiovascular MRI in Heart Failure and the Cardiomyopathies. Magnetic Resonance Imaging Clinics of North America, 2007, 15, 541-564.	1.1	15
40	Evidence-based cardiovascular magnetic resonance cost-effectiveness calculator for the detection of significant coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 1.	3.3	15
41	Myocardial scar segmentation from magnetic resonance images using convolutional neural network.		14
42	Cascaded Triplanar Autoencoder M-Net for Fully Automatic Segmentation of Left Ventricle Myocardial Scar From Three-Dimensional Late Gadolinium-Enhanced MR Images. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2582-2593.	6.3	13
43	Improved accuracy and precision with threeâ€parameter simultaneous myocardial T ₁ and T ₂ mapping using multiparametric SASHA. Magnetic Resonance in Medicine, 2022, 87, 2775-2791.	3.0	13
44	Pectus Excavatum With Compression of the Inferior Vena Cava. Circulation, 2009, 120, 1722-1724.	1.6	12
45	Influence of phase correction of late gadolinium enhancement images on scar signal quantification in patients with ischemic and non-ischemic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 66.	3.3	12
46	Cardiac remodelling predicts outcome in patients with chronic heart failure. ESC Heart Failure, 2021, 8, 5352-5362.	3.1	12
47	Fully automated segmentation of left ventricular myocardium from 3D late gadolinium enhancement magnetic resonance images using a U-net convolutional neural network-based model., 2019,,.		12
48	Right ventricular insertion site fibrosis in a dilated cardiomyopathy referral population: phenotypic associations and value for the prediction of heart failure admission or death. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 79.	3.3	11
49	Cardiovascular toxicity of PI3Kα inhibitors. Clinical Science, 2020, 134, 2595-2622.	4.3	11
50	Hemodynamic Assessment in Bicuspid Aortic Valve Disease and Aortic Dilation: New Insights From Voxel-By-Voxel Analysis of Reverse Flow, Stasis, and Energetics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 725113.	4.1	11
51	Abnormal Lymphatic Channels Detected by T2-Weighted MR Imaging as a Substrate for Ventricular Arrhythmia in HCM. JACC: Cardiovascular Imaging, 2016, 9, 1354-1356.	5.3	10
52	Neural-Network-Based Diagnosis Using 3-Dimensional Myocardial Architecture and Deformation: Demonstration for the Differentiation of Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2020, 7, 584727.	2.4	10
53	Determinants and Prognostic Significance of Serial Right Heart Function Changes in Patients With Cardiac Amyloidosis. Canadian Journal of Cardiology, 2020, 36, 432-440.	1.7	10
54	Left atrial remodelling, mid-regional pro-atrial natriuretic peptide, and prognosis across a range of ejection fractions in heart failure. European Heart Journal Cardiovascular Imaging, 2021, 22, 220-228.	1.2	10

#	Article	IF	CITATIONS
55	2021 Update on Safety of Magnetic Resonance Imaging: Joint Statement From Canadian Cardiovascular Society/Canadian Society for Cardiovascular Magnetic Resonance/Canadian Heart Rhythm Society. Canadian Journal of Cardiology, 2021, 37, 835-847.	1.7	10
56	A Fast Convex Optimization Approach to Segmenting 3D Scar Tissue from Delayed-Enhancement Cardiac MR Images. Lecture Notes in Computer Science, 2012, 15, 659-666.	1.3	9
57	Intra-thoracic fat volume is associated with myocardial infarction in patients with metabolic syndrome. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 77.	3.3	8
58	Contribution of mitral valve leaflet length and septal wall thickness to outflow tract obstruction in patients with hypertrophic cardiomyopathy. International Journal of Cardiovascular Imaging, 2017, 33, 1201-1211.	1.5	8
59	3D myocardial deformation analysis from cine MRI as a marker of amyloid protein burden in cardiac amyloidosis: validation versus T1 mapping. International Journal of Cardiovascular Imaging, 2018, 34, 1937-1946.	1.5	8
60	Quantitative technetium pyrophosphate and cardiovascular magnetic resonance in patients with suspected cardiac amyloidosis. Journal of Nuclear Cardiology, 2022, 29, 2679-2690.	2.1	8
61	Circulating troponin and further left ventricular ejection fraction improvement in patients with previously recovered left ventricular ejection fraction. ESC Heart Failure, 2020, 7, 2725-2733.	3.1	7
62	Validation of a three-dimensional intravascular ultrasound imaging technique to assess atherosclerotic burden: potential for improved assessment of cardiac allograft coronary artery disease. Canadian Journal of Cardiology, 2003, 19, 1147-53.	1.7	7
63	Intra-thoracic adiposity is associated with impaired contractile function in patients with coronary artery disease: a cardiovascular magnetic resonance imaging study. International Journal of Cardiovascular Imaging, 2019, 35, 121-131.	1.5	5
64	Left Atrial Function Using Cardiovascular Magnetic Resonance Imaging Independently Predicts Life-Threatening Arrhythmias in Patients Referred to Receive a Primary Prevention Implantable Cardioverter Defibrillator. Canadian Journal of Cardiology, 2019, 35, 1149-1157.	1.7	5
65	Mid-wall striae fibrosis predicts heart failure admission, composite heart failure events, and life-threatening arrhythmias in dilated cardiomyopathy. Scientific Reports, 2022, 12, 1739.	3 . 3	5
66	Differentiation of physiologic versus pathologic basal septal fibrosis: Proposed diagnostic criteria and associations with clinical and CMR-based markers of cardiovascular disease. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P104.	3.3	3
67	Ventricular pacing site separation by cardiac computed tomography: validation for the prediction of clinical response to cardiac resynchronization therapy. International Journal of Cardiovascular Imaging, 2017, 33, 1433-1442.	1.5	3
68	3D scar segmentation from LGE-MRI using a continuous max-flow method., 2018,,.		3
69	Left Atrial Strain in DilatedÂCardiomyopathy. JACC: Cardiovascular Imaging, 2022, 15, 1027-1029.	5.3	3
70	Machine Learning Patient-Specific Prediction of Heart Failure Hospitalization Using Cardiac MRI-Based Phenotype and Electronic Health Information. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	3
71	Right ventricular outflow tract ventricular tachycardia ablation post-Rastelli repair. Europace, 2011, 13, 1050-1052.	1.7	2
72	Comparison of myocardial scar geometries generated from 2D and 3D LGE MRI. , 2018, , .		2

#	Article	IF	CITATIONS
73	GW24-e2928â€Computed tomography metal artifact reduction for evaluation of lead calcification in patients with implantable cardiac defibrillator. Heart, 2013, 99, A270.2-A270.	2.9	0
74	The Prognostic Significance of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Patients with Non-ischemic Cardiomyopathy. Annals of Nuclear Cardiology, 2017, 3, 80-87.	0.2	0
75	Putting the "l―in Infarction. JACC: Cardiovascular Imaging, 2019, 12, 2179-2181.	5.3	0