Yuan-Qiang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4931750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antifouling activity of terpenoids from the corals <i>Sinularia flexibilis</i> and <i>Muricella</i> sp. against the bryozoan <i>Bugula neritina</i> . Journal of Asian Natural Products Research, 2023, 25, 85-94.	1.4	1
2	Two new <i>nor</i> -lignans from <i>Selaginella pulvinata</i> (Hook. & Grev.) Maxim and their antihyperglycemic activities. Natural Product Research, 2022, 36, 279-286.	1.8	4
3	Preparation and structural properties of selenium modified heteropolysaccharide from the fruits of Akebia quinata and in vitro and in vivo antitumor activity. Carbohydrate Polymers, 2022, 278, 118950.	10.2	13
4	New diarylheptanoid dimers as GLP-1 secretagogues and multiple-enzyme inhibitors from Alpinia katsumadai. Bioorganic Chemistry, 2022, 120, 105653.	4.1	6
5	Construction of inulin-based selenium nanoparticles to improve the antitumor activity of an inulin-type fructan from chicory. International Journal of Biological Macromolecules, 2022, 210, 261-270.	7.5	9
6	A Narrative Review of the Effects of Citrus Peels and Extracts on Human Brain Health and Metabolism. Nutrients, 2022, 14, 1847.	4.1	9
7	Preparation, characterization, and antitumor activity of Chaenomeles speciosa polysaccharide-based selenium nanoparticles. Arabian Journal of Chemistry, 2022, 15, 103943.	4.9	8
8	A natural xanthone suppresses lung cancer growth and metastasis by targeting STAT3 and FAK signaling pathways. Phytomedicine, 2022, 102, 154118.	5.3	12
9	Anti-inflammatory withanolides from the aerial parts of Physalis minima. Phytochemistry, 2022, 202, 113301.	2.9	3
10	Structure, anti-tumor activity, and potential anti-tumor mechanism of a fungus polysaccharide from Fomes officinalis. Carbohydrate Polymers, 2022, 295, 119794.	10.2	16
11	Structural elucidation of an immunological arabinan from the rhizomes of Ligusticum chuanxiong, a traditional Chinese medicine. International Journal of Biological Macromolecules, 2021, 170, 42-52.	7.5	13
12	Structural properties and in vitro and in vivo immunomodulatory activity of an arabinofuranan from the fruits of Akebia quinata. Carbohydrate Polymers, 2021, 256, 117521.	10.2	20
13	Isolation of Adenosine and Cordysinin B from Anredera cordifolia that Stimulates CRE-Mediated Transcription in PC12 Cells. Planta Medica International Open, 2021, 8, e19-e24.	0.5	2
14	Cytotoxic and Antiangiogenetic Xanthones Inhibiting Tumor Proliferation and Metastasis from <i>Garcinia xipshuanbannaensis</i> . Journal of Natural Products, 2021, 84, 1515-1523.	3.0	12
15	The Antitumor Activity and Mechanism of a Natural Diterpenoid From Casearia graveolens. Frontiers in Oncology, 2021, 11, 688195.	2.8	3
16	Polyoxygenated sesquiterpenoids from Salvia castanea and their potential anti-Alzheime's disease bioactivities. Fìtoterapìâ, 2021, 151, 104867.	2.2	7
17	Structural characteristics and in vitro and in vivo immunoregulatory properties of a gluco-arabinan from Angelica dahurica. International Journal of Biological Macromolecules, 2021, 183, 90-100.	7.5	14
18	Anti-inflammatory spiroditerpenoids from Penicillium bialowiezense. Bioorganic Chemistry, 2021, 113, 105012.	4.1	7

#	Article	IF	CITATIONS
19	Structural analysis and biological effects of a neutral polysaccharide from the fruits of Rosa laevigata. Carbohydrate Polymers, 2021, 265, 118080.	10.2	35
20	Chemical constituents from basidiomycete Basidioradulum radula culture medium and their cytotoxic effect on human prostate cancer DU-145 cells. Bioorganic Chemistry, 2021, 114, 105064.	4.1	1
21	A new α-pyrone from Arthrinium pseudosinense culture medium and its estrogenic activity in MCF-7 cells. Journal of Antibiotics, 2021, 74, 893-897.	2.0	6
22	Diarylheptanoidâ€flavanone Hybrids as Multipleâ€ŧarget Antidiabetic Agents from <i>Alpinia katsumadai</i> . Chinese Journal of Chemistry, 2021, 39, 3051-3063.	4.9	13
23	Construction and antitumor activity of selenium nanoparticles decorated with the polysaccharide extracted from Citrus limon (L.) Burm. f. (Rutaceae). International Journal of Biological Macromolecules, 2021, 188, 904-913.	7.5	28
24	A dandelion polysaccharide and its selenium nanoparticles: Structure features and evaluation of anti-tumor activity in zebrafish models. Carbohydrate Polymers, 2021, 270, 118365.	10.2	45
25	Structural elucidation and immunomodulatory evaluation of a polysaccharide from Stevia rebaudiana leaves. Food Chemistry, 2021, 364, 130310.	8.2	22
26	Structure features, selenylation modification, and improved anti-tumor activity of a polysaccharide from Eriobotrya japonica. Carbohydrate Polymers, 2021, 273, 118496.	10.2	44
27	Janthinoid A, an unprecedented tri- <i>nor</i> -meroterpenoid with highly modified bridged 4a,1-(epoxymethano)phenanthrene scaffold, produced by the endophyte of <i>Penicillium janthinellum</i> TE-43. Organic Chemistry Frontiers, 2021, 8, 6196-6202.	4.5	7
28	Chemical Constituents Isolated from the Leaves of Toricellia angulata Oliv. var. intermedia (Harms.) Hu. Natural Product Communications, 2021, 16, 1934578X2110454.	0.5	0
29	Design and construction of IR780- and EGCG-based and mitochondrial targeting nanoparticles and their application in tumor chemo-phototherapy. Journal of Materials Chemistry B, 2021, 9, 9932-9945.	5.8	13
30	A fructan from Anemarrhena asphodeloides Bunge showing neuroprotective and immunoregulatory effects. Carbohydrate Polymers, 2020, 229, 115477.	10.2	58
31	Clerodane Diterpenoids Isolated from the Leaves of <i>Casearia graveolens</i> . Journal of Natural Products, 2020, 83, 36-44.	3.0	11
32	Anti-Inflammatory <i>ent</i> -Kaurane Diterpenoids from <i>Isodon serra</i> . Journal of Natural Products, 2020, 83, 2844-2853.	3.0	17
33	Natural iridoids from Patrinia heterophylla showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chemistry, 2020, 104, 104331.	4.1	9
34	Amomutsaokols A–K, diarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity. Phytochemistry, 2020, 177, 112418.	2.9	22
35	Three new guaiane-type sesquiterpenoids and a monoterpenoid from <i>Litsea lancilimba</i> Merr. Natural Product Research, 2020, , 1-14.	1.8	10
36	Pomegranate Metabolites Impact Tryptophan Metabolism in Humans and Mice. Current Developments in Nutrition, 2020, 4, nzaa165.	0.3	12

#	Article	IF	CITATIONS
37	Ellagic Acid and Its Microbial Metabolite Urolithin A Alleviate Dietâ€Induced Insulin Resistance in Mice. Molecular Nutrition and Food Research, 2020, 64, e2000091.	3.3	23
38	Nineteen New Flavanol–Fatty Alcohol Hybrids with α-Glucosidase and PTP1B Dual Inhibition: One Unusual Type of Antidiabetic Constituent from <i>Amomum tsao-ko</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 11434-11448.	5.2	31
39	Euphnerins A and B, Diterpenoids with a 5/6/6 Rearranged Spirocyclic Carbon Skeleton from the Stems of <i>Euphorbia neriifolia</i> . Journal of Natural Products, 2020, 83, 2592-2596.	3.0	9
40	Antimicrobial Furancarboxylic Acids from a <i>Penicillium</i> sp Journal of Natural Products, 2020, 83, 3606-3613.	3.0	15
41	Novel Pathway for Chloramphenicol Catabolism in the Activated Sludge Bacterial Isolate <i>Sphingobium</i> sp. CAP-1. Environmental Science & Technology, 2020, 54, 7591-7600.	10.0	41
42	Diterpenoids as potential anti-inflammatory agents from Ajuga pantantha. Bioorganic Chemistry, 2020, 101, 103966.	4.1	11
43	A heteropolysaccharide purified from leaves of Ilex latifolia displaying immunomodulatory activity in vitro and in vivo. Carbohydrate Polymers, 2020, 245, 116469.	10.2	26
44	Bioactive triterpenoids from Lantana camara showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chemistry, 2020, 101, 104004.	4.1	18
45	Anti-inflammatory Metabolites from <i>Chaetomium nigricolor</i> . Journal of Natural Products, 2020, 83, 881-887.	3.0	13
46	Diterpenoids from the leaves of Casearia kurzii showing cytotoxic activities. Bioorganic Chemistry, 2020, 98, 103741.	4.1	23
47	Anti-inflammatory <i>neo</i> -Clerodane Diterpenoids from <i>Ajuga pantantha</i> . Journal of Natural Products, 2020, 83, 894-904.	3.0	25
48	Anti-inflammatory Limonoids From Cortex Dictamni. Frontiers in Chemistry, 2020, 8, 73.	3.6	19
49	Isolation, structural elucidation, and immunoregulation properties of an arabinofuranan from the rinds of Garcinia mangostana. Carbohydrate Polymers, 2020, 246, 116567.	10.2	28
50	Tsaokopyranols A–M, 2,6-epoxydiarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity. Bioorganic Chemistry, 2020, 96, 103638.	4.1	39
51	An active heteropolysaccharide from the rinds of Garcinia mangostana Linn.: Structural characterization and immunomodulation activity evaluation. Carbohydrate Polymers, 2020, 235, 115929.	10.2	21
52	Caseahomopene A, a ring-expanded homotriterpenoid from Casearia kurzii showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chemistry, 2020, 98, 103758.	4.1	3
53	A cyclic peptide and two pairs of norlignan lignanoside epimers from Selaginella pulvinata. Fìtoterapìâ, 2020, 143, 104562.	2.2	1
54	Nitric oxide inhibitory iridoids as potential anti-inflammatory agents from Valeriana jatamansi. Bioorganic Chemistry, 2020, 101, 103974.	4.1	6

#	Article	IF	CITATIONS
55	lsoprenoids obtained from Cortex Dictamni and their nitric oxide inhibitory activities. Fìtoterapìâ, 2019, 139, 104358.	2.2	1
56	<i>Xylodon flaviporus</i> -Derived Drimane Sesquiterpenoids That Inhibit Osteoclast Differentiation. Journal of Natural Products, 2019, 82, 2835-2841.	3.0	7
57	NO inhibitory diterpenoids as potential anti-inflammatory agents from Euphorbia antiquorum. Bioorganic Chemistry, 2019, 92, 103237.	4.1	23
58	In vitro screening for compounds from Hypericum longistylum with anti-pulmonary fibrosis activity. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126695.	2.2	7
59	Cytotoxic clerodane diterpenoids from the leaves of Casearia kurzii. Bioorganic Chemistry, 2019, 85, 558-567.	4.1	15
60	Cytotoxic diterpenoids as potential anticancer agents from the twigs of Casearia kurzii. Bioorganic Chemistry, 2019, 89, 102995.	4.1	9
61	Bioactive Diterpenoids from the Stems of <i>Euphorbia antiquorum</i> . Journal of Natural Products, 2019, 82, 1634-1644.	3.0	21
62	Clerodane diterpenoids from Casearia kurzii and their cytotoxic activities. Journal of Natural Medicines, 2019, 73, 826-833.	2.3	8
63	Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorganic Chemistry, 2019, 87, 585-593.	4.1	36
64	Bioactive terpenoids from Euonymus verrucosus var. pauciflorus showing NO inhibitory activities. Bioorganic Chemistry, 2019, 87, 447-456.	4.1	12
65	NO inhibitory phytochemicals as potential anti-inflammatory agents from the twigs of Trigonostemon heterophyllus. Bioorganic Chemistry, 2019, 87, 417-424.	4.1	16
66	Xylopins A–F, six rare guaiane dimers with three different connecting modes from Xylopia vielana. RSC Advances, 2019, 9, 9235-9242.	3.6	5
67	Bioactive Diterpenoids from the Stems of <i>Euphorbia royleana</i> . Journal of Natural Products, 2019, 82, 183-193.	3.0	29
68	Enantiomeric Isoflavones with neuroprotective activities from the Fruits of Maclura tricuspidata. Scientific Reports, 2019, 9, 1757.	3.3	7
69	Chemical Constituents of the Leaves of Butterbur (Petasites japonicus) and Their Anti-Inflammatory Effects. Biomolecules, 2019, 9, 806.	4.0	20
70	Nitric oxide inhibitory limonoids as potential anti-neuroinflammatory agents from Swietenia mahagoni. Bioorganic Chemistry, 2019, 84, 177-185.	4.1	14
71	Seco-labdane diterpenoids from the leaves of Callicarpa nudiflora showing nitric oxide inhibitory activity. Phytochemistry, 2018, 149, 31-41.	2.9	20
72	NO inhibitory constituents as potential anti-neuroinflammatory agents for AD from Blumea balsamifera. Bioorganic Chemistry, 2018, 76, 449-457.	4.1	26

#	Article	IF	CITATIONS
73	Daphnane diterpenoids with nitric oxide inhibitory activities and interactions with iNOS from the leaves of Trigonostemon thyrsoideus. Phytochemistry, 2018, 147, 57-67.	2.9	9
74	NO inhibitors function as potential anti-neuroinflammatory agents for AD from the flowers of Inula japonica. Bioorganic Chemistry, 2018, 77, 168-175.	4.1	34
75	Nitric oxide inhibitors with a spiro diterpenoid skeleton from Scutellaria formosana : Structures, NO inhibitory effects, and interactions with iNOS. Bioorganic Chemistry, 2018, 76, 53-60.	4.1	19
76	Extractive from Hypericum ascyron L promotes serotonergic neuronal differentiation in vitro. Stem Cell Research, 2018, 31, 42-50.	0.7	7
77	Cytotoxic Drimane Sesquiterpenoids Isolated from <i>Perenniporia maackiae</i> . Journal of Natural Products, 2018, 81, 1444-1450.	3.0	17
78	Chemical and biological profiles of Tussilago farfara: Structures, nitric oxide inhibitory activities, and interactions with iNOS protein. Journal of Functional Foods, 2017, 32, 37-45.	3.4	17
79	Alismol, a Sesquiterpenoid Isolated from Vladimiria souliei, Suppresses Proinflammatory Mediators in Lipopolysaccharide-Stimulated Microglia. Journal of Molecular Neuroscience, 2017, 62, 106-113.	2.3	9
80	Antiviral Activities of Trichothecenes Isolated from <i>Trichoderma albolutescens</i> against <i>Pepper Mottle Virus</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 4273-4279.	5.2	31
81	Chemical constituents isolated from Antarctic marine-derived Aspergillus sp. SF-5976 and their anti-inflammatory effects in LPS-stimulated RAW 264.7 and BV2 cells. Tetrahedron, 2017, 73, 3905-3912.	1.9	31
82	Bioactive terpenoids from Silybum marianum and their suppression on NO release in LPS-induced BV-2 cells and interaction with iNOS. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2161-2165.	2.2	14
83	Natural NO inhibitors from the leaves of Callicarpa kwangtungensis: Structures, activities, and interactions with iNOS. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 670-674.	2.2	19
84	Phytochemicals with NO inhibitory effects and interactions with iNOS protein from Trigonostemon howii. Bioorganic Chemistry, 2017, 75, 71-77.	4.1	20
85	Nitric oxide inhibitory daphnane diterpenoids as potential anti-neuroinflammatory agents for AD from the twigs of Trigonostemon thyrsoideus. Bioorganic Chemistry, 2017, 75, 149-156.	4.1	40
86	Polycyclic phloroglucinols as PTP1B inhibitors from Hypericum longistylum : Structures, PTP1B inhibitory activities, and interactions with PTP1B. Bioorganic Chemistry, 2017, 75, 139-148.	4.1	23
87	Clerodane diterpenoids from Scutellaria formosana with inhibitory effects on NO production and interactions with iNOS protein. Phytochemistry, 2017, 144, 141-150.	2.9	17
88	Bioactive diterpenoids from Trigonostemon chinensis : Structures, NO inhibitory activities, and interactions with iNOS. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4785-4789.	2.2	21
89	Characterization of diterpenoids from Caesalpinia decapetala and their anti-TMV activities. Fìtoterapìâ, 2016, 113, 144-150	2.2	10
90	Diterpenoids from Callicarpa kwangtungensis and their NO inhibitory effects. Fìtoterapìâ, 2016, 113, 151-157.	2.2	18

#	Article	IF	CITATIONS
91	Chemical Constituents Isolated from the Root Bark of <i>Cudrania tricuspidata</i> and Their Potential Neuroprotective Effects. Journal of Natural Products, 2016, 79, 1938-1951.	3.0	38
92	Bioactive Terpenoids from <i>Salvia plebeia</i> : Structures, NO Inhibitory Activities, and Interactions with iNOS. Journal of Natural Products, 2016, 79, 2924-2932.	3.0	43
93	Lanostane Triterpenes Isolated from <i>Antrodia heteromorpha</i> and Their Inhibitory Effects on RANKL-Induced Osteoclastogenesis. Journal of Natural Products, 2016, 79, 1689-1693.	3.0	15
94	15-O-Acetyl-3-O-benzoylcharaciol and helioscopinolide A, two diterpenes isolated from Euphorbia helioscopia suppress microglia activation. Neuroscience Letters, 2016, 612, 149-154.	2.1	16
95	Di- and Triterpenoids from the Leaves of <i>Casearia balansae</i> and Neurite Outgrowth Promoting Effects of PC12 Cells. Journal of Natural Products, 2016, 79, 170-179.	3.0	36
96	Absolute Configurations and NO Inhibitory Activities of Terpenoids from <i>Curcuma longa</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 5805-5812.	5.2	52
97	Characterization of Diterpenes from <i>Euphorbia prolifera</i> and Their Antifungal Activities against Phytopathogenic Fungi. Journal of Agricultural and Food Chemistry, 2015, 63, 5902-5910.	5.2	21
98	Bioactive Diterpenoids from the Leaves of <i>Callicarpa macrophylla</i> . Journal of Natural Products, 2015, 78, 1563-1569.	3.0	43
99	Spiroindole Alkaloids and Spiroditerpenoids from <i>Aspergillus duricaulis</i> and Their Potential Neuroprotective Effects. Journal of Natural Products, 2015, 78, 2572-2579.	3.0	37
100	Isolation, Characterization, and Antiproliferative Activities of Eudesmanolide Derivatives from the Flowers of <i>Inula japonica</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 9006-9011.	5.2	24
101	Characterization and Biological Evaluation of Diterpenoids from <i>Casearia graveolens</i> . Journal of Natural Products, 2015, 78, 2648-2656.	3.0	24
102	Sesquiterpenes from Carpesium macrocephalum inhibit Candida albicans biofilm formation and dimorphism. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5409-5411.	2.2	21
103	Diterpenes inhibiting NO production from Euphorbia helioscopia. Fìtoterapìâ, 2014, 95, 133-138.	2.2	41
104	Two novel clerodane diterpenenes with NGF-potentiating activities from the twigs of Croton yanhuii. Fìtoterapìâ, 2014, 95, 229-233.	2.2	38
105	Structure Elucidation and Inhibitory Effects on NO Production of Clerodane Diterpenes from Ajuga decumbens. Planta Medica, 2012, 78, 1579-1593.	1.3	10
106	neo-Clerodane diterpenes from Ajuga decumbens and their inhibitory activities on LPS-induced NO production. Fìtoterapìâ, 2012, 83, 1409-1414.	2.2	21
107	neo-Clerodane diterpenes from Ajuga ciliata and their inhibitory activities on LPS-induced NO production. Phytochemistry Letters, 2012, 5, 563-566.	1.2	14
108	Bioactive <i>neo</i> -Clerodane Diterpenoids from the Whole Plants of <i>Ajuga ciliata</i> Bunge. Journal of Natural Products, 2011, 74, 1575-1583.	3.0	44

#	Article	IF	CITATIONS
109	neo-Clerodane diterpenes from Ajuga ciliata Bunge and their neuroprotective activities. Fìtoterapìâ, 2011, 82, 1123-1127.	2.2	32
110	Apigenin inhibits NF-κB and Snail signaling, EMT and metastasis in human hepatocellular carcinoma. Oncotarget, 0, 7, 41421-41431.	1.8	80