## Jenchywan Wang -

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493172/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The glucocorticoid receptor represses, whereas C/EBPÎ <sup>2</sup> can enhance or repress CYP26A1 transcription.<br>IScience, 2022, 25, 104564.                                                              | 4.1 | 3         |
| 2  | The role of striated muscle Pik3r1 in glucose and protein metabolism following chronic glucocorticoid exposure. Journal of Biological Chemistry, 2021, 296, 100395.                                          | 3.4 | 7         |
| 3  | A State-of-the-Science Review of Arsenic's Effects on Glucose Homeostasis in Experimental Models.<br>Environmental Health Perspectives, 2020, 128, 16001.                                                    | 6.0 | 26        |
| 4  | Chronic arsenic exposure impairs adaptive thermogenesis in male C57BL/6J mice. American Journal of<br>Physiology - Endocrinology and Metabolism, 2020, 318, E667-E677.                                       | 3.5 | 11        |
| 5  | OR14-03 The Transcriptional Coactivation Function of EHMT2 Restricts Chronic Glucocorticoid Exposure Induced Insulin Resistance. Journal of the Endocrine Society, 2020, 4, .                                | 0.2 | 1         |
| 6  | An ANGPTL4–ceramide–protein kinase Cζ axis mediates chronic glucocorticoid exposure–induced<br>hepatic steatosis and hypertriglyceridemia in mice. Journal of Biological Chemistry, 2019, 294,<br>9213-9224. | 3.4 | 25        |
| 7  | 610-P: Sphingosine Kinase 1 Dissociates Glucocorticoid-Induced Insulin Resistance and Hepatic<br>Dyslipidemia. Diabetes, 2019, 68, 610-P.                                                                    | 0.6 | 0         |
| 8  | Glucocorticoid Receptor and Adipocyte Biology. Nuclear Receptor Research, 2018, 5, .                                                                                                                         | 2.5 | 59        |
| 9  | Fighting obesity by targeting factors regulating beige adipocytes. Current Opinion in Clinical<br>Nutrition and Metabolic Care, 2018, 21, 437-443.                                                           | 2.5 | 13        |
| 10 | Pik3r1 Is Required for Glucocorticoid-Induced Perilipin 1 Phosphorylation in Lipid Droplet for Adipocyte Lipolysis. Diabetes, 2017, 66, 1601-1610.                                                           | 0.6 | 23        |
| 11 | The C-terminal fibrinogen-like domain of angiopoietin-like 4 stimulates adipose tissue lipolysis and promotes energy expenditure. Journal of Biological Chemistry, 2017, 292, 16122-16134.                   | 3.4 | 42        |
| 12 | The glucocorticoid-Angptl4-ceramide axis induces insulin resistance through PP2A and PKCζ. Science<br>Signaling, 2017, 10, .                                                                                 | 3.6 | 37        |
| 13 | Angiopoietin-like 4 in glucocorticoid induced insulin resistance. Oncotarget, 2017, 8, 106143-106144.                                                                                                        | 1.8 | 1         |
| 14 | Transcriptional regulation of FoxO3 gene by glucocorticoids in murine myotubes. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E572-E585.                                         | 3.5 | 12        |
| 15 | G6PC2 Modulates the Effects of Dexamethasone on Fasting Blood Glucose and Glucose Tolerance.<br>Endocrinology, 2016, 157, 4133-4145.                                                                         | 2.8 | 13        |
| 16 | G6PC2 Modulates Fasting Blood Glucose In Male Mice in Response to Stress. Endocrinology, 2016, 157, 3002-3008.                                                                                               | 2.8 | 16        |
| 17 | Regulatory Actions of Glucocorticoid Hormones: From Organisms to Mechanisms. Advances in Experimental Medicine and Biology, 2015, 872, 3-31.                                                                 | 1.6 | 41        |
| 18 | Regulation of Glucose Homeostasis by Glucocorticoids. Advances in Experimental Medicine and<br>Biology, 2015, 872, 99-126.                                                                                   | 1.6 | 438       |

JENCHYWAN WANG -

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Conclusions and Future Directions. Advances in Experimental Medicine and Biology, 2015, 872, 381-382.                                                                                                                                           | 1.6 | 0         |
| 20 | Coregulator Cell Cycle and Apoptosis Regulator 1 (CCAR1) Positively Regulates Adipocyte<br>Differentiation through the Glucocorticoid Signaling Pathway. Journal of Biological Chemistry, 2014,<br>289, 17078-17086.                            | 3.4 | 32        |
| 21 | Repression of glucocorticoid-stimulated angiopoietin-like 4 gene transcription by insulin. Journal of<br>Lipid Research, 2014, 55, 919-928.                                                                                                     | 4.2 | 28        |
| 22 | Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system. American Journal of Physiology - Renal Physiology, 2014, 306, G686-G698.                                          | 3.4 | 10        |
| 23 | Metabolic functions of glucocorticoid receptor in skeletal muscle. Molecular and Cellular<br>Endocrinology, 2013, 380, 79-88.                                                                                                                   | 3.2 | 169       |
| 24 | Angiopoietin-like 4 (Angptl4) Protein Is a Physiological Mediator of Intracellular Lipolysis in Murine<br>Adipocytes. Journal of Biological Chemistry, 2012, 287, 8444-8456.                                                                    | 3.4 | 85        |
| 25 | Angiopoietin-like 4 (Angptl4). Adipocyte, 2012, 1, 182-187.                                                                                                                                                                                     | 2.8 | 34        |
| 26 | Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism Journal of Biological Chemistry, 2012, 287, 4394.                 | 3.4 | 1         |
| 27 | Regulation of triglyceride metabolism by glucocorticoid receptor. Cell and Bioscience, 2012, 2, 19.                                                                                                                                             | 4.8 | 94        |
| 28 | Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks<br>modulating insulin signaling. Proceedings of the National Academy of Sciences of the United States of<br>America, 2012, 109, 11160-11165. | 7.1 | 127       |
| 29 | Genome-Wide Analysis of Glucocorticoid Receptor Binding Regions in Adipocytes Reveal Gene Network<br>Involved in Triglyceride Homeostasis. PLoS ONE, 2010, 5, e15188.                                                                           | 2.5 | 146       |
| 30 | Differential In Vivo Effects on Target Pathways of a Novel Arylpyrazole Glucocorticoid Receptor<br>Modulator Compared with Prednisolone. Journal of Pharmacology and Experimental Therapeutics,<br>2010, 333, 281-289.                          | 2.5 | 13        |
| 31 | Transcriptional Regulation of Human Dual Specificity Protein Phosphatase 1 (DUSP1) Gene by<br>Glucocorticoids. PLoS ONE, 2010, 5, e13754.                                                                                                       | 2.5 | 93        |
| 32 | Angiopoietin-like 4 (ANGPTL4, Fasting-induced Adipose Factor) Is a Direct Glucocorticoid Receptor<br>Target and Participates in Glucocorticoid-regulated Triglyceride Metabolism. Journal of Biological<br>Chemistry, 2009, 284, 25593-25601.   | 3.4 | 134       |
| 33 | Novel arylpyrazole compounds selectively modulate glucocorticoid receptor regulatory activity.<br>Genes and Development, 2006, 20, 689-699.                                                                                                     | 5.9 | 84        |
| 34 | Finding Primary Targets of Transcriptional Regulators. Cell Cycle, 2005, 4, 356-358.                                                                                                                                                            | 2.6 | 19        |
| 35 | From The Cover: Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15603-15608.                 | 7.1 | 279       |
| 36 | The Caenorhabditis elegans Ortholog of TRAP240, CeTRAP240/let-19, Selectively Modulates Gene<br>Expression and Is Essential for Embryogenesis. Journal of Biological Chemistry, 2004, 279, 29270-29277.                                         | 3.4 | 29        |

JENCHYWAN WANG -

| #  | Article                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100,<br>13845-13850.                                                                                         | 7.1 | 219       |
| 38 | Transducin-like Enhancer of Split Proteins, the Human Homologs of Drosophila Groucho, Interact with Hepatic Nuclear Factor 312. Journal of Biological Chemistry, 2000, 275, 18418-18423.                                                                                                                  | 3.4 | 51        |
| 39 | The Molecular Physiology of Hepatic Nuclear Factor 3 in the Regulation of Gluconeogenesis. Journal of Biological Chemistry, 2000, 275, 14717-14721.                                                                                                                                                       | 3.4 | 58        |
| 40 | Transcription Activation by the Orphan Nuclear Receptor, Chicken Ovalbumin Upstream<br>Promoter-Transcription Factor I (COUP-TFI). Journal of Biological Chemistry, 2000, 275, 3446-3454.                                                                                                                 | 3.4 | 40        |
| 41 | The Phosphoenolpyruvate Carboxykinase Gene Clucocorticoid Response Unit: Identification of the<br>Functional Domains of Accessory Factors HNF3β (Hepatic Nuclear Factor-3β) and HNF4 and the Necessity<br>of Proper Alignment of Their Cognate Binding Sites. Molecular Endocrinology, 1999, 13, 604-618. | 3.7 | 67        |
| 42 | CCAAT/Enhancer-binding Protein β Is an Accessory Factor for the Glucocorticoid Response from the cAMP Response Element in the Rat Phosphoenolpyruvate Carboxykinase Gene Promoter. Journal of Biological Chemistry, 1999, 274, 5880-5887.                                                                 | 3.4 | 86        |
| 43 | The Phosphoenolpyruvate Carboxykinase Gene Glucocorticoid Response Unit: Identification of the<br>Functional Domains of Accessory Factors HNF3Â (Hepatic Nuclear Factor-3Â) and HNF4 and the Necessity<br>of Proper Alignment of Their Cognate Binding Sites. Molecular Endocrinology, 1999, 13, 604-618. | 3.7 | 50        |
| 44 | Structural Requirements of the Glucocorticoid and Retinoic Acid Response Units in the<br>Phosphoenolpyruvate Carboxykinase Gene Promoter. Molecular Endocrinology, 1998, 12, 1487-1498.                                                                                                                   | 3.7 | 52        |
| 45 | Further Characterization of the Glucocorticoid Response Unit in the Phosphoenolpyruvate<br>Carboxykinase Gene. The Role of the Glucocorticoid Receptor-Binding Sites. Molecular<br>Endocrinology, 1998, 12, 482-491.                                                                                      | 3.7 | 73        |
| 46 | SRC-1 and GRIP1 Coactivate Transcription with Hepatocyte Nuclear Factor 4. Journal of Biological Chemistry, 1998, 273, 30847-30850.                                                                                                                                                                       | 3.4 | 132       |
| 47 | Structural Requirements of the Glucocorticoid and Retinoic Acid Response Units in the<br>Phosphoenolpyruvate Carboxykinase Gene Promoter. Molecular Endocrinology, 1998, 12, 1487-1498.                                                                                                                   | 3.7 | 31        |
| 48 | Further Characterization of the Glucocorticoid Response Unit in the Phosphoenolpyruvate<br>Carboxykinase Gene. The Role of the Glucocorticoid Receptor-Binding Sites. Molecular<br>Endocrinology, 1998, 12, 482-491.                                                                                      | 3.7 | 33        |
| 49 | Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids Molecular Endocrinology, 1996, 10, 794-800.                                                                                                       | 3.7 | 102       |
| 50 | Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Molecular Endocrinology, 1996, 10, 794-800.                                                                                                      | 3.7 | 74        |