
Hobeom Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4931693/publications.pdf Version: 2024-02-01

HOBEOM KIM

#	Article	IF	CITATIONS
1	Highly Planar Benzodipyrroleâ€Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100667.	5.8	11
2	Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	23
3	Employing 2Dâ€Perovskite as an Electron Blocking Layer in Highly Efficient (18.5%) Perovskite Solar Cells with Printable Low Temperature Carbon Electrode. Advanced Energy Materials, 2022, 12, .	19.5	60
4	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	5.1	11
5	Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 2021, 15, 656-669.	31.4	136
6	Phase-Pure Quasi-2D Perovskite by Protonation of Neutral Amine. Journal of Physical Chemistry Letters, 2021, 12, 11323-11329.	4.6	8
7	Doped but Stable: Spirobisacridine Hole Transporting Materials for Hysteresis-Free and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 1792-1800.	13.7	39
8	Gradient band structure: high performance perovskite solar cells using poly(bisphenol A) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Ti 10.3	f 50 462 Td (14
9	D–π–Aâ€Type Triazatruxeneâ€Based Dopantâ€Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000173.	5.8	33
10	Selfâ€Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1910620.	14.9	68
11	Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nature Communications, 2020, 11, 3378.	12.8	108
12	Quasi Two-Dimensional Perovskites: Efficient Ruddlesden-Popper Perovskite Light-Emitting Diodes with Randomly Oriented Nanocrystals (Adv. Funct. Mater. 27/2019). Advanced Functional Materials, 2019, 29,	14.9	6

	1970187.		
13	Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing. Advanced Electronic Materials, 2019, 5, 1900008.	5.1	109
14	Stable perovskite solar cells using tin acetylacetonate based electron transporting layers. Energy and Environmental Science, 2019, 12, 1910-1917.	30.8	57
15	Efficient Ruddlesden–Popper Perovskite Lightâ€Emitting Diodes with Randomly Oriented Nanocrystals. Advanced Functional Materials, 2019, 29, 1901225.	14.9	95
16	Efficient Perovskite Lightâ€Emitting Diodes Using Polycrystalline Core–Shellâ€Mimicked Nanograins. Advanced Functional Materials, 2019, 29, 1902017.	14.9	76
17	Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy, 2018, 52, 329-335.	16.0	64
18	Efficient Flexible Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Based on Graphene Anode. Advanced Materials, 2017, 29, 1605587.	21.0	200

2

Новеом Кім

#	Article	IF	CITATIONS
19	Highâ€Efficiency Solutionâ€Processed Inorganic Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1700579.	21.0	193
20	Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano Energy, 2017, 42, 157-165.	16.0	98
21	Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency. NPG Asia Materials, 2017, 9, e411-e411.	7.9	60
22	Versatile Metal Nanowiring Platform for Largeâ€Scale Nano―and Optoâ€Electronic Devices. Advanced Materials, 2016, 28, 9109-9116.	21.0	69
23	Optoâ€Electronic Devices: Versatile Metal Nanowiring Platform for Largeâ€Scale Nano―and Optoâ€Electronic Devices (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9232-9232.	21.0	2
24	Selfâ€Doped Conducting Polymer as a Holeâ€Extraction Layer in Organic–Inorganic Hybrid Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500678.	3.7	93
25	Onâ€Fabrication Solidâ€State Nâ€Doping of Graphene by an Electronâ€Transporting Metal Oxide Layer for Efficient Inverted Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600172.	19.5	46
26	Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy and Environmental Science, 2016, 9, 12-30.	30.8	449
27	Flexible Lamination Encapsulation. Advanced Materials, 2015, 27, 4308-4314.	21.0	61
28	Flexible Encapsulation: Flexible Lamination Encapsulation (Adv. Mater. 29/2015). Advanced Materials, 2015, 27, 4387-4387.	21.0	2
29	Organic solar cells using CVD-grown graphene electrodes. Nanotechnology, 2014, 25, 014012.	2.6	81
30	Low Dimentional 2D Perovskite As An Effective Electron Blocking Layer In Efficient (18.5%) And Stable Hole-Selective Layer-Free Carbon Electrode Based Perovskite Solar Cells. , 0, , .		0
31	Electron Blocking 2D Perovskite In Highly Efficient (18.5%) Hole-Selective Layer-Free Perovskite Solar Cells Using Low-Temperature Processed Carbon Electrode. , 0, , .		0