List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4931640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Investigation of Electrochemical Performances for Lithium-Ion Batteries with Si/Graphite Anodes: Effect of Electrolytes Based on Fluoroethylene Carbonate and Linear Carbonates. ACS Applied Energy Materials, 2021, 4, 2419-2429.	2.5	15
2	Tris(2,2,2-trifluoroethyl) Phosphate as a Cosolvent for a Nonflammable Electrolyte in Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 4919-4927.	2.5	12
3	A safe electrolyte for high-performance lithium-ion batteries containing lithium difluoro(oxalato)borate, gamma-butyrolactone and non-flammable hydrofluoroether. Electrochimica Acta, 2021, 394, 139120.	2.6	9
4	A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range. Journal of Materials Chemistry A, 2021, 9, 15363-15372.	5.2	23
5	A Non-Flammable Electrolyte for Lithium-Ion Batteries Containing Lithium Difluoro(oxalato)borate, Propylene Carbonate and Tris(2,2,2-Trifluoroethyl)Phosphate. Journal of the Electrochemical Society, 2020, 167, 080524.	1.3	9
6	Li _{1.17} Mn _{0.50} Ni _{0.16} Co _{0.17} O ₂ assembled microspheres as a high-rate and long-life cathode of Li-ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 650-658.	3.0	12
7	A novel mixture of lithium bis(oxalato)borate, gamma-butyrolactone and non-flammable hydrofluoroether as a safe electrolyte for advanced lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 19982-19990.	5.2	39
8	Preparation of Layered‧pinel Microsphere/Reduced Graphene Oxide Cathode Materials for Ultrafast Charge–Discharge Lithiumâ€lon Batteries. ChemSusChem, 2017, 10, 4845-4850.	3.6	18
9	A strontium-doped Li2FeSiO4/C cathode with enhanced performance for the lithium-ion battery. Journal of Solid State Electrochemistry, 2017, 21, 3659-3673.	1.2	10
10	Unraveling the effect of exposed facets on voltage decay and capacity fading of Li-rich layered oxides. Journal of Power Sources, 2017, 364, 121-129.	4.0	21
11	A Safe Electrolyte Based on Propylene Carbonate and Non-Flammable Hydrofluoroether for High-Performance Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1991-A1999.	1.3	33
12	High-rate and long-life Li1.18Mn0.56Ni0.13Co0.13O2 cathodes of Li-ion batteries. Journal of Alloys and Compounds, 2017, 723, 243-251.	2.8	15
13	Li 1.15 Mn 0.49 Ni 0.18 Co 0.18 O 2 nanoplates with exposed (012) plane as high energy and power cathode of Li-ion batteries. Electrochimica Acta, 2016, 219, 516-523.	2.6	12
14	Functionalized 1,3-dialkylimidazolium bis(fluorosulfonyl)imide as neat ionic liquid electrolytes for lithium-ion batteries. Electrochemistry Communications, 2016, 72, 148-152.	2.3	13
15	Ternary mixtures of nitrile-functionalized glyme, non-flammable hydrofluoroether and fluoroethylene carbonate as safe electrolytes for lithium-ion batteries. Journal of Power Sources, 2016, 331, 445-451.	4.0	25
16	Safe Electrolytes for Lithium-Ion Batteries Based on Ternary Mixtures of Triethylene Glycol Dimethylether, Fluoroethylene Carbonate and Non-Flammable Methyl-Nonafluorobutyl Ether. Journal of the Electrochemical Society, 2016, 163, A1951-A1958.	1.3	20
17	New ether-functionalized pyrazolium ionic liquid electrolytes based on the bis(fluorosulfonyl)imide anion for lithium-ion batteries. RSC Advances, 2016, 6, 71489-71495.	1.7	11
18	Physicochemical properties of functionalized 1,3-dialkylimidazolium ionic liquids based on the bis(fluorosulfonyl)imide anion. RSC Advances, 2016, 6, 66650-66657.	1.7	14

#	Article	IF	CITATIONS
19	Countering the Segregation of Transitionâ€Metal Ions in LiMn _{1/3} Co _{1/3} Ni _{1/3} O ₂ Cathode for Ultralong Life and Highâ€Energy Liâ€Ion Batteries. Small, 2016, 12, 4421-4430.	5.2	30
20	Discovery of a surface protective layer: A new insight into countering capacity and voltage degradation for high-energy lithium-ion batteries. Nano Energy, 2016, 21, 198-208.	8.2	31
21	Improving the electrochemical performance of layered Li-rich transition-metal oxides by alleviating the blockade effect of surface lithium. Journal of Materials Chemistry A, 2016, 4, 5184-5190.	5.2	37
22	Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery. Journal of Power Sources, 2016, 307, 69-76.	4.0	53
23	Low-viscosity ether-functionalized pyrazolium ionic liquids based on dicyanamide anions: properties and application as electrolytes for lithium metal batteries. RSC Advances, 2015, 5, 93888-93899.	1.7	18
24	Compatibility of LiMn2O4 cathode with electrolyte based on low-viscosity ether-functionalized pyrazolium ionic liquid. Journal of Applied Electrochemistry, 2015, 45, 235-244.	1.5	11
25	Novel mixtures of ether-functionalized ionic liquids and non-flammable methylperfluorobutylether as safe electrolytes for lithium metal batteries. RSC Advances, 2015, 5, 33897-33904.	1.7	22
26	Li 2 FeSiO 4 coated by sorbitanlaurat-derived carbon as cathode of high-performance lithium-ion battery. Electrochimica Acta, 2015, 163, 123-131.	2.6	22
27	A novel mixture of diethylene glycol diethylether and non-flammable methyl-nonafluorobutyl ether as a safe electrolyte for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 21159-21166.	5.2	39
28	Uniform LiMO ₂ assembled microspheres as superior cycle stability cathode materials for high energy and power Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22026-22030.	5.2	14
29	Synthesis and characterization of high capacity Li2MnSiO4/C cathode material for lithium-ion battery. Journal of Power Sources, 2014, 252, 169-175.	4.0	27
30	Functionalized ionic liquids based on quaternary ammonium cations with two ether groups as new electrolytes for Li/LiFePO4 secondary battery. Journal of Power Sources, 2014, 254, 137-147.	4.0	15
31	Synthesis, Characterization, and Properties of Ether-Functionalized 1,3-Dialkylimidazolium Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 16633-16643.	1.8	32
32	The electrochemical and local structural analysis of the mesoporous Li4Ti5O12 anode. Journal of Power Sources, 2014, 268, 294-300.	4.0	22
33	Functionalized Ionic Liquids Based on Trialkylimidazolium Cations with Alkoxymethyl Group at the N-1 Position: Synthesis, Characterization, and Application as Electrolytes for a Lithium Ion Battery. Industrial & Engineering Chemistry Research, 2014, 53, 2860-2871.	1.8	9
34	Sn-contained N-rich carbon nanowires for high-capacity and long-life lithium storage. Electrochimica Acta, 2014, 127, 390-396.	2.6	34
35	Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale, 2013, 5, 10623.	2.8	28
36	New polymerized ionic liquid (PIL) gel electrolyte membranes based on tetraalkylammonium cations for lithium ion batteries. Journal of Membrane Science, 2013, 447, 222-227.	4.1	77

#	Article	IF	CITATIONS
37	Properties and application of ether-functionalized trialkylimidazolium ionic liquid electrolytes for lithium battery. Journal of Power Sources, 2013, 226, 210-218.	4.0	29
38	Synthesis and electrochemical properties of ordered macroporous Li3V2(PO4)3 cathode materials for lithium ion batteries. Electrochimica Acta, 2013, 111, 685-690.	2.6	20
39	Mesoporous TiO2–Sn@C core–shell microspheres for Li-ion batteries. Chemical Communications, 2013, 49, 2792.	2.2	74
40	C-2 Functionalized Trialkylimidazolium Ionic Liquids with Alkoxymethyl Group: Synthesis, Characterization, and Properties. Industrial & Engineering Chemistry Research, 2013, 52, 7297-7306.	1.8	6
41	Facile fabrication of graphene/Cu6Sn5 nanocomposite as the high performance anode material for lithium ion batteries. Electrochimica Acta, 2013, 105, 629-634.	2.6	40
42	Li2FeSiO4/C with good performance as cathode material for Li-ion battery. Materials Letters, 2013, 108, 1-4.	1.3	13
43	Polymeric ionic liquid membranes as electrolytes for lithium battery applications. Journal of Applied Electrochemistry, 2012, 42, 851-856.	1.5	12
44	Low-viscosity ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. Journal of Power Sources, 2012, 216, 323-329.	4.0	40
45	Li2FeSiO4/C cathode material synthesized by template-assisted sol–gel process with Fe2O3 microsphere. Journal of Power Sources, 2012, 217, 243-247.	4.0	37
46	Ether-Functionalized Trialkylimidazolium Ionic Liquids: Synthesis, Characterization, and Properties. Industrial & Engineering Chemistry Research, 2012, 51, 11011-11020.	1.8	41
47	Polymerized ionic liquids with guanidinium cations as host for gel polymer electrolytes in lithium metal batteries. Polymer International, 2012, 61, 259-264.	1.6	59
48	Ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. Electrochimica Acta, 2012, 66, 67-74.	2.6	38
49	Three-dimensional core–shell Cu@Cu6Sn5 nanowires as the anode material for lithium ion batteries. Journal of Power Sources, 2012, 199, 341-345.	4.0	27
50	Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries. Journal of Power Sources, 2012, 200, 59-66.	4.0	138
51	Synthesis of mesoporous Sn–Cu composite for lithium ion batteries. Journal of Power Sources, 2012, 209, 204-208.	4.0	41
52	Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries. Journal of Power Sources, 2011, 196, 8662-8668.	4.0	64
53	Functionalized ionic liquids based on guanidinium cations with two ether groups as new electrolytes for lithium battery. Journal of Power Sources, 2011, 196, 10658-10666.	4.0	52
54	Ordered mesoporous Sn–C composite as an anode material for lithium ion batteries. Electrochemistry Communications, 2011, 13, 848-851.	2.3	47

#	Article	IF	CITATIONS
55	One ether-functionalized guanidinium ionic liquid as new electrolyte for lithium battery. Journal of Power Sources, 2011, 196, 1433-1441.	4.0	56
56	Novel polymeric ionic liquid membranes as solid polymer electrolytes with high ionic conductivity at moderate temperature. Journal of Membrane Science, 2011, 366, 245-250.	4.1	79
57	Li/LiFePO4 battery performance with a guanidinium-based ionic liquid as the electrolyte. Science Bulletin, 2011, 56, 2906-2910.	1.7	12
58	Functionalized ionic liquids based on quaternary ammonium cations with three or four ether groups as new electrolytes for lithium battery. Electrochimica Acta, 2011, 56, 4663-4671.	2.6	55
59	New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. Journal of Power Sources, 2011, 196, 5637-5644.	4.0	106
60	Li/LiFePO4 batteries with gel polymer electrolytes incorporating a guanidinium-based ionic liquid cycled at room temperature and 50°C. Journal of Power Sources, 2011, 196, 6502-6506.	4.0	31
61	Electrochemical behavior of copper current collector in imidazolium-based ionic liquid electrolytes. Journal of Applied Electrochemistry, 2010, 40, 653-662.	1.5	19
62	Li ₄ Ti ₅ O ₁₂ Nanoparticles Prepared with Gelâ€hydrothermal Process as a High Performance Anode Material for Liâ€ion Batteries. Chinese Journal of Chemistry, 2010, 28, 911-915.	2.6	13
63	Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochimica Acta, 2010, 55, 6596-6600.	2.6	171
64	lonic liquids based on guanidinium cations and TFSI anion as potential electrolytes. Electrochimica Acta, 2009, 54, 1752-1756.	2.6	60
65	Ionic liquids based on S-alkylthiolanium cations and TFSI anion as potential electrolytes. Science Bulletin, 2009, 54, 1322-1327.	4.3	7
66	Ionic liquids based on functionalized guanidinium cations and TFSI anion as potential electrolytes. Electrochimica Acta, 2009, 54, 4269-4273.	2.6	71
67	Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries. Electrochimica Acta, 2009, 54, 6244-6249.	2.6	161
68	Guanidinium-based ionic liquids as new electrolytes for lithium battery. Journal of Power Sources, 2009, 191, 619-622.	4.0	37
69	Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector. Solar Energy, 2007, 81, 717-722.	2.9	35
70	Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochemistry Communications, 2007, 9, 2696-2702.	2.3	85