Lei You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493159/publications.pdf

Version: 2024-02-01

109264 123376 4,414 93 35 61 citations h-index g-index papers 101 101 101 6402 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	CREPT serves as a biomarker of poor survival in pancreatic ductal adenocarcinoma. Cellular Oncology (Dordrecht), 2021, 44, 345-355.	2.1	2
2	Clinicopathological and prognostic significance of ubiquitinâ \in specific peptidase 15 and its relationship with transforming growth factorâ \in î² receptors in patients with pancreatic ductal adenocarcinoma. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 507-515.	1.4	7
3	Preclinical models of pancreatic ductal adenocarcinoma: challenges and opportunities in the era of precision medicine. Journal of Experimental and Clinical Cancer Research, 2021, 40, 8.	3.5	13
4	Targeting hypoxic tumor microenvironment in pancreatic cancer. Journal of Hematology and Oncology, 2021, 14, 14.	6.9	198
5	Quantitative assessment of the diagnostic role of mucin family members in pancreatic cancer: a meta-analysis. Annals of Translational Medicine, 2021, 9, 192-192.	0.7	9
6	The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells, 2021, 10, 497.	1.8	28
7	Surgical Treatment for Postprandial Hypoglycemia After Roux-en-Y Gastric Bypass: a Literature Review. Obesity Surgery, 2021, 31, 1801-1809.	1.1	9
8	Integrative Genomic Analysis of Gemcitabine Resistance in Pancreatic Cancer by Patient-derived Xenograft Models. Clinical Cancer Research, 2021, 27, 3383-3396.	3.2	36
9	Comprehensive Analysis of Autophagy-Associated IncRNAs Reveal Potential Prognostic Prediction in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 596573.	1.3	7
10	Construction of a prognostic model with histone modification-related genes and identification of potential drugs in pancreatic cancer. Cancer Cell International, 2021, 21, 291.	1.8	8
11	Early screening and diagnosis strategies of pancreatic cancer: a comprehensive review. Cancer Communications, 2021, 41, 1257-1274.	3.7	111
12	High-resolution Hi-C maps highlight multiscale 3D epigenome reprogramming during pancreatic cancer metastasis. Journal of Hematology and Oncology, 2021, 14, 120.	6.9	23
13	Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Letters, 2021, 520, 1-11.	3.2	128
14	The promoting effects of hsa_circ_0050102 in pancreatic cancer and the molecular mechanism by targeting miR-1182/NPSR1. Carcinogenesis, 2021, 42, 471-480.	1.3	9
15	The enhancement of glycolysis regulates pancreatic cancer metastasis. Cellular and Molecular Life Sciences, 2020, 77, 305-321.	2.4	206
16	High aspartate aminotransferase to alanine aminotransferase ratio on admission as risk factor for poor prognosis in COVID-19 patients. Scientific Reports, 2020, 10, 16496.	1.6	26
17	The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592094094.	1.4	35
18	The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduction and Targeted Therapy, 2020, 5, 143.	7.1	63

#	Article	IF	CITATIONS
19	Mucins in pancreatic cancer: A wellâ€established but promising family for diagnosis, prognosis and therapy. Journal of Cellular and Molecular Medicine, 2020, 24, 10279-10289.	1.6	54
20	<p>GSTM3 Function and Polymorphism in Cancer: Emerging but Promising</p> . Cancer Management and Research, 2020, Volume 12, 10377-10388.	0.9	17
21	Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies. Frontiers in Oncology, 2020, 10, 572722.	1.3	35
22	Glutathione S-Transferase Mu-3 Predicts a Better Prognosis and Inhibits Malignant Behavior and Glycolysis in Pancreatic Cancer. Frontiers in Oncology, 2020, 10, 1539.	1.3	9
23	Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides?. Frontiers in Oncology, 2020, 10, 576399.	1.3	55
24	Prognostic and predictive value of a five-molecule panel in resected pancreatic ductal adenocarcinoma: A multicentre study. EBioMedicine, 2020, 55, 102767.	2.7	15
25	Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Letters, 2020, 485, 1-13.	3.2	10
26	Transducin-Like Enhancer of Split-1 Inhibits Malignant Behaviors in vitro and Predicts a Better Prognosis in Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2020, 10, 576.	1.3	5
27	Expression, function and clinical application of stanniocalcin†in cancer. Journal of Cellular and Molecular Medicine, 2020, 24, 7686-7696.	1.6	31
28	Novel therapeutic strategies and perspectives for metastatic pancreatic cancer: vaccine therapy is more than just a theory. Cancer Cell International, 2020, 20, 66.	1.8	27
29	Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Molecular Cancer, 2020, 19, 50.	7.9	192
30	High Expression of Cancer-Derived Glycosylated Immunoglobulin G Predicts Poor Prognosis in Pancreatic Ductal Adenocarcinoma. Journal of Cancer, 2020, 11, 2213-2221.	1.2	21
31	Neoantigen-based immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Cancer Letters, 2020, 490, 12-19.	3.2	10
32	Hexosamine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein response and EGFR-Akt pathway modulation. Oncogene, 2020, 39, 4103-4117.	2.6	33
33	OLR1 Promotes Pancreatic Cancer Metastasis via Increased c-Myc Expression and Transcription of HMGA2. Molecular Cancer Research, 2020, 18, 685-697.	1.5	40
34	MiR-135a biogenesis and regulation in malignancy: a new hope for cancer research and therapy. Cancer Biology and Medicine, 2020, 17, 569-582.	1.4	26
35	High Expression of MUC15 Is Correlated with Poor Prognosis of Pancreatic Cancer and Promotes Migration, Invasion, and Chemo-Resistance In Vitro. Medical Science Monitor, 2020, 26, e926432.	0.5	2
36	Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer. American Journal of Cancer Research, 2020, 10, 1937-1953.	1.4	21

#	Article	IF	Citations
37	Novel discoveries targeting gemcitabineâ€based chemoresistance and new therapies in pancreatic cancer: How far are we from the destination?. Cancer Medicine, 2019, 8, 6403-6413.	1.3	17
38	Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer. Journal of Hematology and Oncology, 2019, 12, 97.	6.9	88
39	MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Frontiers in Oncology, 2019, 9, 893.	1.3	41
40	Integrated analysis of gene expression and methylation profiles of novel pancreatic cancer cell lines with highly metastatic activity. Science China Life Sciences, 2019, 62, 791-806.	2.3	5
41	WT1 associated protein promotes metastasis and chemo-resistance to gemcitabine by stabilizing Fak mRNA in pancreatic cancer. Cancer Letters, 2019, 451, 48-57.	3.2	52
42	The dual functional role of MicroRNAâ€18a (miRâ€18a) in cancer development. Clinical and Translational Medicine, 2019, 8, 32.	1.7	55
43	Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Molecular Cancer, 2019, 18, 173.	7.9	67
44	Non-invasive detection of pancreatic cancer by measuring DNA methylation of Basonuclin 1 and Septin 9 in plasma. Chinese Medical Journal, 2019, 132, 1504-1506.	0.9	9
45	Clinicopathological and prognostic significance of MKK4 and MKK7 in resectable pancreatic ductal adenocarcinoma. Human Pathology, 2019, 86, 143-154.	1.1	8
46	NF-κB in pancreatic cancer: Its key role in chemoresistance. Cancer Letters, 2018, 421, 127-134.	3.2	71
47	High expression of GRK3 is associated with favorable prognosis in pancreatic ductal adenocarcinoma. Pathology Research and Practice, 2018, 214, 228-232.	1.0	6
48	LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 2018, 37, 274.	3.5	83
49	High nuclear Survivin expression as a poor prognostic marker in pancreatic ductal adenocarcinoma. Journal of Surgical Oncology, 2018, 118, 1115-1121.	0.8	11
50	Gemcitabine exhibits a suppressive effect on pancreatic cancer cell growth by regulating processing of <scp>PVT</scp> 1 to miR1207. Molecular Oncology, 2018, 12, 2147-2164.	2.1	36
51	Tumor microenvironment participates in metastasis of pancreatic cancer. Molecular Cancer, 2018, 17, 108.	7.9	361
52	Extracellular vesicles as mediators of the progression and chemoresistance of pancreatic cancer and their potential clinical applications. Molecular Cancer, 2018, 17, 2.	7.9	61
53	MiR-10a-5p targets TFAP2C to promote gemcitabine resistance in pancreatic ductal adenocarcinoma. Journal of Experimental and Clinical Cancer Research, 2018, 37, 76.	3.5	58
54	Plasminogen Activator Inhibitor 1 as a Poor Prognostic Indicator in Resectable Pancreatic Ductal Adenocarcinoma. Chinese Medical Journal, 2018 , 131 , 2947 - 2952 .	0.9	11

#	Article	lF	Citations
55	Pancreatic Cancer Progression Relies upon Mutant p53-Induced Oncogenic Signaling Mediated by NOP14. Cancer Research, 2017, 77, 2661-2673.	0.4	35
56	Expression of key mTOR pathway components in pancreatic ductal adenocarcinoma: A multicenter study for clinicopathologic and prognostic significance. Cancer Letters, 2017, 395, 45-52.	3.2	9
57	The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer. Cancer Letters, 2017, 397, 94-102.	3.2	50
58	WT1-associated protein is a novel prognostic factor in pancreatic ductal adenocarcinoma. Oncology Letters, 2017, 13, 2531-2538.	0.8	38
59	The Effect of Prophylactic Central Neck Dissection on Locoregional Recurrence in Papillary Thyroid Cancer After Total Thyroidectomy: A Systematic Review and Meta-Analysis. Annals of Surgical Oncology, 2017, 24, 2189-2198.	0.7	91
60	Potential functions and implications of circular RNA in gastrointestinal cancer (Review). Oncology Letters, 2017, 14, 7016-7020.	0.8	5
61	PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Letters, 2017, 407, 57-65.	3.2	235
62	Molecular Subtyping of Pancreatic Cancer: Translating Genomics and Transcriptomics into the Clinic. Journal of Cancer, 2017, 8, 513-522.	1.2	36
63	5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Research, 2017, 27, 1243-1257.	5 . 7	262
64	PIM-1 contributes to the malignancy of pancreatic cancer and displays diagnostic and prognostic value. Journal of Experimental and Clinical Cancer Research, 2016, 35, 133.	3.5	46
65	c-Fos/ERK promotes the progression from pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma. Oncology Reports, 2016, 36, 3413-3420.	1.2	9
66	Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim. Oncology Letters, 2016, 12, 4732-4738.	0.8	6
67	Plasma miRNAs Effectively Distinguish Patients With Pancreatic Cancer From Controls. Annals of Surgery, 2016, 263, 1173-1179.	2.1	73
68	Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review). International Journal of Oncology, 2016, 48, 1783-1793.	1.4	84
69	G-protein-coupled receptor kinase 2 in pancreatic cancer: clinicopathologic and prognostic significance. Human Pathology, 2016, 56, 171-177.	1.1	18
70	The Effect of Body Mass Index on Surgical Outcomes in Patients Undergoing Pancreatic Resection. Pancreas, 2016, 45, 796-805.	0.5	25
71	Long non-coding RNA PVT1 and cancer. Biochemical and Biophysical Research Communications, 2016, 471, 10-14.	1.0	119
72	Filamin A: Insights into its Exact Role in Cancers. Pathology and Oncology Research, 2016, 22, 245-252.	0.9	76

#	Article	IF	CITATIONS
73	Expression and Significances of MTSS1 in Pancreatic Cancer. Pathology and Oncology Research, 2016, 22, 7-14.	0.9	14
74	miR-497 expression, function and clinical application in cancer. Oncotarget, 2016, 7, 55900-55911.	0.8	57
75	CXCL12-CXCR7 axis contributes to the invasive phenotype of pancreatic cancer. Oncotarget, 2016, 7, 62006-62018.	0.8	40
76	Challenges in detecting pre-malignant pancreatic lesions during acute pancreatitis using a serum microRNA assay: a study based on <i>KrasG12D</i> transgenic mice. Oncotarget, 2016, 7, 22700-22710.	0.8	8
77	Analysis of clinical characteristics and treatment of pancreatic cystic tumors. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2016, 28, 519-527.	0.7	0
78	Catechol―O â€methyltransferase, a new target for pancreatic cancer therapy. Cancer Science, 2015, 106, 576-583.	1.7	15
79	Expression of c-fos Was Associated with Clinicopathologic Characteristics and Prognosis in Pancreatic Cancer. PLoS ONE, 2015, 10, e0120332.	1.1	20
80	Chemotherapy-Induced miRNA-29c/Catenin-δSignaling Suppresses Metastasis in Gastric Cancer. Cancer Research, 2015, 75, 1332-1344.	0.4	58
81	MiR-1178 Promotes the Proliferation, G1/S Transition, Migration and Invasion of Pancreatic Cancer Cells by Targeting CHIP. PLoS ONE, 2015, 10, e0116934.	1.1	19
82	HLA-G impairs host immune response and predicts poor prognosis in pancreatic cancer. American Journal of Translational Research (discontinued), 2015, 7, 2036-44.	0.0	18
83	Nuclear translocation of fibroblast growth factor receptor 3 and its significance in pancreatic cancer. International Journal of Clinical and Experimental Pathology, 2015, 8, 14640-8.	0.5	9
84	Alteration of the Intrinsic Apoptosis Pathway Is Involved in Notch-induced Chemoresistance to Gemcitabine in Pancreatic Cancer. Archives of Medical Research, 2014, 45, 15-20.	1.5	16
85	PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncology, 2014, 10, 865-876.	1.1	33
86	Insulin-Like Growth Factor 1 Receptor (IGF-1R) as a Target of MiR-497 and Plasma IGF-1R Levels Associated with TNM Stage of Pancreatic Cancer. PLoS ONE, 2014, 9, e92847.	1.1	36
87	An Increased Total Resected Lymph Node Count Benefits Survival following Pancreas Invasive Intraductal Papillary Mucinous Neoplasms Resection: An Analysis Using the Surveillance, Epidemiology, and End Result Registry Database. PLoS ONE, 2014, 9, e107962.	1.1	5
88	The Effect of Pylorus Removal on Delayed Gastric Emptying after Pancreaticoduodenectomy: A Meta-Analysis of 2,599 Patients. PLoS ONE, 2014, 9, e108380.	1.1	25
89	MiR-497 downregulation contributes to the malignancy of pancreatic cancer and associates with a poor prognosis. Oncotarget, 2014, 5, 6983-6993.	0.8	76
90	$Kr\tilde{A}\frac{1}{4}$ pel-like factor 8 is a potential prognostic factor for pancreatic cancer. Chinese Medical Journal, 2014, 127, 856-9.	0.9	5

Lei You

#	Article	IF	CITATIONS
91	Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells. Biochemical and Biophysical Research Communications, 2011, 407, 1-6.	1.0	118
92	Core signaling pathways and new therapeutic targets in pancreatic cancer. Chinese Medical Journal, 2010, 123, 1210-5.	0.9	6
93	Plasma microRNA panels to diagnose pancreatic cancer: Results from a multicenter study. Oncotarget, 0, 7, 41575-41583.	0.8	46