
Tatiany PatrÃ-cia Romão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4931280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins, 2021, 13, 523.	1.5	46
2	Discovery of 1,2,4-oxadiazole derivatives as a novel class of noncompetitive inhibitors of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. Bioorganic and Medicinal Chemistry, 2020, 28, 115252.	1.4	12
3	Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. Pesticide Biochemistry and Physiology, 2020, 165, 104464.	1.6	16
4	EBV and CMV viral load in rheumatoid arthritis and their role in associated Sjögren's syndrome. Journal of Oral Pathology and Medicine, 2020, 49, 693-700.	1.4	11
5	Functional <i>Bacillus thuringiensis</i> Cyt1Aa Is Necessary To Synergize <i>Lysinibacillus sphaericus</i> Binary Toxin (Bin) against Bin-Resistant and -Refractory Mosquito Species. Applied and Environmental Microbiology, 2020, 86, .	1.4	12
6	A differential transcriptional profile by Culex quinquefasciatus larvae resistant to Lysinibacillus sphaericus IAB59 highlights genes and pathways associated with the resistance phenotype. Parasites and Vectors, 2019, 12, 407.	1.0	12
7	Maternal physical activity prevents the overexpression of hypoxia-inducible factor 1-α and cardiorespiratory dysfunction in protein malnourished rats. Scientific Reports, 2019, 9, 14406.	1.6	3
8	Phosphorylation and interactions associated with the control of theLeishmaniaPoly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biology, 2018, 15, 1-17.	1.5	12
9	N-glycosylation influences the catalytic activity of mosquito α-glucosidases associated with susceptibility or refractoriness to Lysinibacillus sphaericus. Insect Biochemistry and Molecular Biology, 2017, 81, 62-71.	1.2	8
10	Identification of Cry48Aa/Cry49Aa toxin ligands in the midgut of Culex quinquefasciatus larvae. Insect Biochemistry and Molecular Biology, 2017, 88, 63-70.	1.2	14
11	RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation. PLoS ONE, 2017, 12, e0180678.	1.1	3
12	A new allele conferring resistance to Lysinibacillus sphaericus is detected in low frequency in Culex quinquefasciatus field populations. Parasites and Vectors, 2016, 9, 70.	1.0	8
13	Coâ€selection and replacement of resistance alleles to <i>LysinibacillusÂsphaericus</i> in a <i>CulexÂquinquefasciatus</i> colony. FEBS Journal, 2015, 282, 3592-3602.	2.2	12
14	The unique Leishmania EIF4E4ÂN-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation. RNA Biology, 2015, 12, 1209-1221.	1.5	18
15	Non conserved residues between Cqm1 and Aam1 mosquito α-glucosidases are critical for the capacity of Cqm1 to bind the Binary toxin from Lysinibacillus sphaericus. Insect Biochemistry and Molecular Biology, 2014, 50, 34-42.	1.2	18
16	Novel Mutations Associated with Resistance to Bacillus sphaericus in a Polymorphic Region of the Culex quinquefasciatus cqm1 Gene. Applied and Environmental Microbiology, 2012, 78, 6321-6326.	1.4	23
17	The N-terminal third of the BinB subunit from the Bacillus sphaericus binary toxin is sufficient for its interaction with midgut receptors in Culex quinquefasciatus. FEMS Microbiology Letters, 2011, 321, 167-174.	0.7	16
18	The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored α-glucosidase, which does not bind to the insecticidal binary toxin. Insect Biochemistry and Molecular Biology, 2010, 40, 604-610.	1.2	36

#	Article	IF	CITATIONS
19	Detection of an Allele Conferring Resistance to <i>Bacillus sphaericus</i> Binary Toxin in <i>Culex quinquefasciatus</i> Populations by Molecular Screening. Applied and Environmental Microbiology, 2009, 75, 1044-1049.	1.4	27
20	A second independent resistance mechanism to Bacillus sphaericus binary toxin targets its alpha-glucosidase receptor in Culex quinquefasciatus. FEBS Journal, 2006, 273, 1556-1568.	2.2	61
21	Genetic diversity in Brazilian populations of Aedes albopictus. Memorias Do Instituto Oswaldo Cruz, 2002, 97, 871-875.	0.8	45