Joan SolÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4931167/publications.pdf

Version: 2024-02-01

170	8,482	51 h-index	85
papers	citations		g-index
171	171	171	6229
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	2.4	350
2	Renormalizing the vacuum energy in cosmological spacetime: implications for the cosmological constant problem. European Physical Journal C, 2022, 82, .	1.4	30
3	The cosmological constant problem and running vacuum in the expanding universe. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	27
4	Running vacuum against the H $\langle sub \rangle 0 \langle sub \rangle$ and $ f \rangle 8 \langle sub \rangle$ tensions. Europhysics Letters, 2021, 134, 19001.	0.7	52
5	Stringy-running-vacuum-model inflation: from primordial gravitational waves and stiff axion matter to dynamical dark energy. European Physical Journal: Special Topics, 2021, 230, 2077-2110.	1.2	31
6	Snowmass2021 - Letter of interest cosmology intertwined I: Perspectives for the next decade. Astroparticle Physics, 2021, 131, 102606.	1.9	37
7	Snowmass2021 - Letter of interest cosmology intertwined II: The hubble constant tension. Astroparticle Physics, 2021, 131, 102605.	1.9	228
8	curvature. Astroparticle Physics, 2021, 131, 102607.	1.9	39
9	Cosmology intertwined III: <mml:math altimg="si4.svg" xmins:mml="http://www.w3.org/1998/Math/Math/Math/ML"><mml:mrow><mml:mi>f</mml:mi><mml:msub><mml:mi>if</mml:mi><mml:msub><mml:msub><mml:mi>S</mml:mi></mml:msub></mml:msub></mml:msub></mml:mrow></mml:math> .		o>182
10	Friedmann cosmology with decaying vacuum density in Brans–Dicke theory. European Physical Journal C, 2021, 81, 1.	1.4	11
11	Inflationary physics and trans-Planckian conjecture in the stringy running vacuum model: from the phantom vacuum to the true vacuum. European Physical Journal Plus, 2021, 136, 1.	1.2	22
12	String-Inspired Running Vacuum—The "Vacuumonâ€â€"And the Swampland Criteria. Universe, 2020, 6, 218.	0.9	7
13	Particle and entropy production in the running vacuum universe. General Relativity and Gravitation, 2020, 52, 1.	0.7	34
14	Gravitational and chiral anomalies in the running vacuum universe and matter-antimatter asymmetry. Physical Review D, 2020, 101, .	1.6	50
15	Quantum anomalies in string-inspired running vacuum universe: Inflation and axion dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 803, 135342.	1.5	31
16	Brans–Dicke cosmology with a Λ-term: a possible solution to ΛCDM tensions*. Classical and Quantum Gravity, 2020, 37, 245003.	1.5	54
17	Running vacuum in quantum field theory in curved spacetime: renormalizing \$\$ho _{vac}\$\$ without \$\$sim m^4\$\$ terms. European Physical Journal C, 2020, 80, 1.	1.4	52
18	Can dark energy be expressed as a power series of the Hubble parameter?. Physical Review D, 2019, 100, .	1.6	46

#	Article	IF	CITATIONS
19	Brans–Dicke Gravity with a Cosmological Constant Smoothes Out ΛCDM Tensions. Astrophysical Journal Letters, 2019, 886, L6.	3.0	91
20	Signs of dynamical dark energy in current observations. Physics of the Dark Universe, 2019, 25, 100311.	1.8	57
21	Do we come from a quantum anomaly?. International Journal of Modern Physics D, 2019, 28, 1944002.	0.9	15
22	Scalar field theory description of the running vacuum model: the vacuumon. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 025-025.	1.9	12
23	Quantum Anomalies, Running Vacuum and Leptogenesis: an Interplay. , 2019, , .		0
24	Dynamical dark energy vs. \hat{b} = const in light of observations. Europhysics Letters, 2018, 121, 39001.	0.7	73
25	Brans–Dicke gravity: From Higgs physics to (dynamical) dark energy. International Journal of Modern Physics D, 2018, 27, 1847029.	0.9	16
26	Brans–Dicke cosmology mimicking running vacuum. Modern Physics Letters A, 2018, 33, 1850228.	0.5	25
27	Tensions in the PCDM and vacuum dynamics. International Journal of Modern Physics A, 2018, 33, 1844009.	0.5	20
28	Density perturbations for running vacuum: a successful approach to structure formation and to the Ïf8-tension. Monthly Notices of the Royal Astronomical Society, 2018, 478, 126-145.	1.6	72
29	Possible signals of vacuum dynamics in the Universe. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4357-4373.	1.6	100
30	Insights into the reproduction of some Antarctic dendroceratid, poecilosclerid, and haplosclerid demosponges. PLoS ONE, 2018, 13, e0192267.	1.1	17
31	Dynamical dark energy: Scalar fields and running vacuum. Modern Physics Letters A, 2017, 32, 1750054.	0.5	66
32	First Evidence of Running Cosmic Vacuum: Challenging the Concordance Model. Astrophysical Journal, 2017, 836, 43.	1.6	146
33	Higgs potential from extended Brans–Dicke theory and the time-evolution of the fundamental constants. Classical and Quantum Gravity, 2017, 34, 025006.	1.5	15
34	The H O tension in light of vacuum dynamics in the universe. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 774, 317-324.	1.5	120
35	Running vacuum in the Universe and the time variation of the fundamental constants of Nature. European Physical Journal C, 2017, 77, 1.	1.4	43
36	Vacuum dynamics in the Universe versus a rigid \hat{b} =const International Journal of Modern Physics A, 2017, 32, 1730014.	0.5	20

#	Article	IF	CITATIONS
37	Relaxing the $\langle i \rangle \ddot{l} / \langle i \rangle \langle sub \rangle 8 \langle sub \rangle$ -tension through running vacuum in the Universe. Europhysics Letters, 2017, 120, 39001.	0.7	56
38	Running vacuum in the universe: Current phenomenological status. , 2017, , .		0
39	Starobinsky-Like Inflation and Running Vacuum in the Context of Supergravity. Universe, 2016, 2, 14.	0.9	32
40	Cosmological constant <i>vis-Ã-vis-(i) dynamical vacuum: Bold challenging the Î>CDM. International Journal of Modern Physics A, 2016, 31, 1630035.</i>	0.5	46
41	Thermodynamical aspects of running vacuum models. European Physical Journal C, 2016, 76, 1.	1.4	34
42	Growth index of matter perturbations in running vacuum models. Physical Review D, 2015, 92, .	1.6	27
43	The cosmological constant and entropy problems: Mysteries of the present with profound roots in the past. International Journal of Modern Physics D, 2015, 24, 1544027.	0.9	31
44	HINTS OF DYNAMICAL VACUUM ENERGY IN THE EXPANDING UNIVERSE. Astrophysical Journal Letters, 2015, 811, L14.	3.0	110
45	The \$ar{Lambda}{m CDM}\$ cosmology: From inflation to dark energy through running $\hat{\mathfrak{b}}$. International Journal of Modern Physics D, 2015, 24, 1541003.	0.9	81
46	Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean. PLoS ONE, 2015, 10, e0118805.	1.1	16
47	Vacuum models with a linear and a quadratic term in H: structure formation and number counts analysis. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2810-2821.	1.6	64
48	Background history and cosmic perturbations for a general system of self-conserved dynamical dark energy and matter. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 048-048.	1.9	40
49	Dynamical vacuum energy in the expanding Universe confronted with observations: a dedicated study. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 004-004.	1.9	108
50	Nonsingular decaying vacuum cosmology and entropy production. General Relativity and Gravitation, $2015, 47, 1.$	0.7	36
51	Fundamental constants and cosmic vacuum: The micro and macro connection. Modern Physics Letters A, 2015, 30, 1540034.	0.5	24
52	Development of 10 microsatellite markers for the Atlanto-Mediterranean sponge Petrosia ficiformis. Conservation Genetics Resources, 2015, 7, 895-897.	0.4	2
53	Dark matter, dark energy and the time evolution of masses in the universe. International Journal of Modern Physics A, 2014, 29, 1444016.	0.5	12
54	A viable Starobinsky-like inflationary scenario in the light of Planck and BICEP2 results. International Journal of Modern Physics D, 2014, 23, 1442011.	0.9	13

#	Article	IF	CITATIONS
55	Quantum Haplodynamics, Dark Matter, and Dark Energy. Advances in High Energy Physics, 2014, 2014, 1-6.	0.5	10
56	Vacuum energy and cosmological evolution. , 2014, , .		27
57	Entropic-force dark energy reconsidered. Physical Review D, 2014, 90, .	1.6	55
58	Consistency tests of the stability of fundamental couplings and unification scenarios. Physical Review D, 2014, 89, .	1.6	20
59	Effective equation of state for running vacuum: 'mirage' quintessence and phantom dark energy. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3331-3342.	1.6	32
60	Δr in the Two-Higgs-Doublet Model at full one loop level—and beyond. European Physical Journal C, 2013, 73, 1.	1.4	24
61	Cosmological constant and vacuum energy: old and new ideas. Journal of Physics: Conference Series, 2013, 453, 012015.	0.3	223
62	FROM INFLATION TO DARK ENERGY THROUGH A DYNAMICAL Î: AN ATTEMPT AT ALLEVIATING FUNDAMENTAL COSMIC PUZZLES. International Journal of Modern Physics D, 2013, 22, 1342008.	0.9	45
63	Complete cosmic history with a dynamical <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i></mml:mi><mml:mo mathvariant="bold">=</mml:mo><mml:mi>i></mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>H</mml:mi><mml:mo) 0.784314="" 1="" 10="" 40.<="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>1.6 7 Td (streto</td><td>118 chy="false"></td></mml:mo)></mml:math>	1.6 7 Td (streto	118 chy="false">
64	Expansion history with decaying vacuum: a complete cosmological scenario. Monthly Notices of the Royal Astronomical Society, 2013, 431, 923-929.	1.6	123
65	Confronting the relaxation mechanism for a large cosmological constant with observations. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 050-050.	1.9	23
66	Matter non-conservation in the universe and dynamical dark energy. Classical and Quantum Gravity, 2012, 29, 215002.	1.5	56
67	Generalizing the running vacuum energy model and comparing with the entropic-force models. Physical Review D, 2012, 86, .	1.6	86
68	Single Higgs-boson production at a photon–photon collider: General 2HDM versus MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 702, 246-255.	1.5	10
69	Dynamical cosmological term in modified gravity. Fortschritte Der Physik, 2011, 59, 1108-1112.	1.5	5
70	Cosmologies with a time dependent vacuum. Journal of Physics: Conference Series, 2011, 283, 012033.	0.3	73
71	Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 007-007.	1.9	87
72	RELAXING A LARGE COSMOLOGICAL CONSTANT IN THE ASTROPHYSICAL DOMAIN. Modern Physics Letters A, 2011, 26, 2559-2578.	0.5	7

#	Article	IF	Citations
73	The Relaxed Universe: Towards solving the cosmological constant problem dynamically from an effective action functional of gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 688, 269-272.	1.5	27
74	Neutral Higgs boson pair production at Linear Colliders. Fortschritte Der Physik, 2010, 58, 660-664.	1.5	3
75	Dynamically avoiding fine-tuning the cosmological constant: the "Relaxed Universe". Journal of Cosmology and Astroparticle Physics, 2010, 2010, 029-029.	1.9	38
76	Cosmic perturbations with running <i>G</i> and λ. Classical and Quantum Gravity, 2010, 27, 105004.	1.5	44
77	Neutral Higgs-pair production at linear colliders within the general two-Higgs-doublet model: Quantum effects and triple Higgs boson self-interactions. Physical Review D, 2010, 81, .	1.6	22
78	Quantum effects on Higgs-strahlung events at linear colliders within the general two-Higgs-doublet model. Physical Review D, 2010, 81 , .	1.6	9
79	Spherical collapse model in time varying vacuum cosmologies. Physical Review D, 2010, 82, .	1.6	42
80	Hubble expansion and structure formation in time varying vacuum models. Physical Review D, 2009, 80,	1.6	160
81	Matter density fluctuations in the running $\hat{\mathfrak{b}}$ CDM and $\hat{\mathfrak{b}}$ XCDM models. EAS Publications Series, 2009, 36, 211-212.	0.3	0
82	Higgs boson pair production through gauge boson fusion at linear colliders within the general 2HDM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 673, 47-56.	1.5	19
83	Single Higgs-boson production through γγ scattering within the general 2HDM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 677, 39-47.	1.5	17
84	Relaxing a large cosmological constant. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 678, 427-433.	1.5	33
85	On the possible running of the cosmological "constant― Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 682, 105-113.	1.5	192
86	Dark energy perturbations and cosmic coincidence. Physical Review D, 2009, 79, .	1.6	70
87	DARK ENERGY PERTURBATIONS AND A POSSIBLE SOLUTION TO THE COINCIDENCE PROBLEM. , 2009, , .		1
88	Triple Higgs boson production in the linear collider. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 659, 297-307.	1.5	29
89	FCNC-induced heavy-quark events at the LHC from supersymmetry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 668, 364-372.	1.5	21
90	Collider aspects of flavor physics at high Q. European Physical Journal C, 2008, 57, 183-307.	1.4	59

#	Article	IF	Citations
91	Dark energy: a quantum fossil from the inflationary universe?. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 164066.	0.7	120
92	What is there in the black box of dark energy: variable cosmological parameters or multiple (interacting) components?. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 6935-6940.	0.7	3
93	Single top-quark production by strong and electroweak supersymmetric flavor-changing interactions at the LHC. Journal of High Energy Physics, 2007, 2007, 054-054.	1.6	22
94	Density perturbations for a running cosmological constant. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 016-016.	1.9	52
95	Cosmologies with variable parameters and dynamical cosmon: implications on the cosmic coincidence problem. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 6787-6799.	0.7	10
96	Effective growth of matter density fluctuations in the running \hat{l} CDM and \hat{l} XCDM models. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 007-007.	1.9	29
97	Cosmological constant problems and the renormalization group. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 6583-6593.	0.7	25
98	IRGAC 2006. Journal of Physics A: Mathematical and Theoretical, 2007, 40, .	0.7	0
99	Composite dark energy: Cosmon models with running cosmological term and gravitational coupling. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 645, 235-244.	1.5	29
100	Cosmology with running parameters. Journal of Physics: Conference Series, 2006, 39, 179-181.	0.3	4
101	ĵ-XCDM cosmologies: solving the cosmological coincidence problem?. AIP Conference Proceedings, 2006, , .	0.3	3
102	Single top-quark production by direct supersymmetric flavor-changing neutral-current interactions at the LHC. Nuclear Physics, Section B, Proceedings Supplements, 2006, 157, 152-156.	0.5	29
103	Physics interplay of the LHC and the ILC. Physics Reports, 2006, 426, 47-358.	10.3	297
104	SUSY Higgs boson flavor-changing neutral currents at the LHC. Nuclear Physics, Section B, Proceedings Supplements, 2006, 157, 147-151.	0.5	6
105	Ĵ-XCDM: a cosmon model solution to the cosmological coincidence problem?. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 011-011.	1.9	95
106	Cosmology with variable parameters and effective equation of state for dark energy. Journal of Physics A, 2006, 39, 6753-6760.	1.6	20
107	DYNAMICAL DARK ENERGY OR VARIABLE COSMOLOGICAL PARAMETERS?. Modern Physics Letters A, 2006, 21, 479-494.	0.5	82
108	Effective equation of state for dark energy: Mimicking quintessence and phantom energy through a variable $\hat{\mathfrak{b}}$. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 624, 147-157.	1.5	152

#	Article	IF	Citations
109	Semiclassical Cosmology with Running Cosmological Constant. , 2005, , 59-71.		1
110	Production and FCNC decay of supersymmetric Higgs bosons into heavy quarks in the LHC. Journal of High Energy Physics, 2005, 2005, 113-113.	1.6	23
111	RunningGand \hat{l}_i at low energies from physics atMX: possible cosmological and astrophysical implications. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 012-012.	1.9	160
112	Testing the running of the cosmological constant with type Ia supernovae at highz. Journal of Cosmology and Astroparticle Physics, 2004, 2004, 006-006.	1.9	95
113	Higgs Boson Flavor-Changing Neutral Decays into Bottom Quarks in Supersymmetry. Journal of High Energy Physics, 2004, 2004, 018-018.	1.6	23
114	Cosmological constant, renormalization group and Planck scale physics. Nuclear Physics, Section B, Proceedings Supplements, 2004, 127, 71-76.	0.5	71
115	Variable cosmological constant as a Planck scale effect. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 574, 149-155.	1.5	164
116	Sfermion precision measurements at a linear collider. Nuclear Physics, Section B, Proceedings Supplements, 2003, 117, 807-810.	0.5	3
117	Supersymmetric effects on heavy charged Higgs boson production in hadron colliders. Nuclear Physics, Section B, Proceedings Supplements, 2003, 116, 296-300.	0.5	2
118	Fermionic decays of sfermions in the MSSM: a full one-loop calculation. Nuclear Physics, Section B, Proceedings Supplements, 2003, 116, 301-305.	0.5	3
119	Higgs boson flavor-changing neutral decays into top quark in a general two-Higgs-doublet model. Nuclear Physics B, 2003, 675, 270-288.	0.9	35
120	The anomaly-induced effective action and natural inflation. , 2003, , .		0
121	Prospects for supersymmetric charged Higgs boson discovery at the Fermilab Tevatron and the CERN Large Hadron Collider. Physical Review D, 2002, 65, .	1.6	33
122	The scaling evolution of the cosmological constant. Journal of High Energy Physics, 2002, 2002, 006-006.	1.6	240
123	Prospects for heavy supersymmetric charged Higgs boson searches at hadron colliders. Journal of High Energy Physics, 2002, 2002, 059-059.	1.6	51
124	Fermionic decays of sfermions: a complete discussion at one-loop order. Journal of High Energy Physics, 2002, 2002, 040-040.	1.6	40
125	Massive fields temper anomaly-induced inflation: the clue to graceful exit?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 530, 10-19.	1.5	65
126	Towards the Graceful Exit From the Anomaly-Induced Inflation. Russian Physics Journal, 2002, 45, 727-733.	0.2	3

#	Article	IF	Citations
127	Loop induced flavor changing neutral decays of the top quark in a general two-Higgs-doublet model. Nuclear Physics B, 2001, 600, 21-38.	0.9	88
128	Full electroweak one-loop radiative corrections to squark decays in the MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 510, 211-220.	1.5	32
129	The cosmological constant in brief. Nuclear Physics, Section B, Proceedings Supplements, 2001, 95, 29-37.	0.5	9
130	Scaling behavior of the cosmological constant and the possible existence of new forces and new light degrees of freedom. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 475, 236-246.	1.5	206
131	FCNC top quark decays in the MSSM: a door to SUSY physics in high luminosity colliders?. Nuclear Physics B, 1999, 562, 3-28.	0.9	132
132	Implications on the supersymmetric Higgs sector from top quark decays at the Tevatron. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 416, 353-360.	1.5	22
133	Heavy charged Higgs boson decaying into top quark in the MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 425, 329-336.	1.5	20
134	Top quark decay into charged Higgs boson in a general Two-Higgs-Doublet Model: implications for the tevatron data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 442, 326-334.	1.5	22
135	Looking for quantum SUSY signatures in top quark decays at hadron colliders. Nuclear Physics, Section B, Proceedings Supplements, 1998, 66, 100-103.	0.5	1
136	Quantum effects on \$tightarrow H^{+},b\$ in the MSSM: a window to "virtual―supersymmetry?. European Physical Journal C, 1998, 2, 373-392.	1.4	59
137	Quantum SUSY signatures in low and high energy processes. Pramana - Journal of Physics, 1998, 51, 239-248.	0.9	2
138	Yukawa-coupling corrections to scalar quark decays. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 437, 88-99.	1.5	53
139	The tan β ⰠMH± bound from inclusive semi-tauonic B-decays in the MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 406, 337-346.	1.5	12
140	Supersymmetric corrections to the Higgs boson decay widths in the MSSM. Nuclear Physics, Section B, Proceedings Supplements, 1997, 52, 70-72.	0.5	0
141	Supersymmetric three-body decays of the top quark in the MSSM. Zeitschrift FÃ $^{1}\!\!/\!\!4$ r Physik C-Particles and Fields, 1997, 74, 337-354.	1.5	7
142	Higgs triplet effects in purely leptonic processes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 374, 131-137.	1.5	12
143	Supersymmetric QCD corrections to the top quark decay of a heavy charged Higgs boson. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 389, 53-61.	1.5	49
144	Strong effects on the hadronic widths of the neutral Higgs bosons in the MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 389, 312-320.	1.5	70

#	Article	IF	CITATIONS
145	Supersymmetric electroweak renormalization of the Z-width in the MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 347, 309-320.	1.5	40
146	Full electroweak supersymmetric quantum effects on Rb in the MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 347, 321-331.	1.5	49
147	The quantum correlation Rbâ^'Rc in the MSSM: more hints of supersymmetry?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 354, 335-344.	1.5	33
148	Matching the low- and high-energy determinations of $\hat{l}\pm s(MZ)$ in the MSSM. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 357, 349-358.	1.5	31
149	Supersymmetric QCD corrections to the charged Higgs boson decay of the top quark. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 360, 47-56.	1.5	37
150	Strong supersymmetric quantum effects on the top quark width. Nuclear Physics B, 1995, 454, 75-85.	0.9	27
151	FULL ONE-LOOP SUPERSYMMETRIC QUANTUM EFFECTS ON Mw. Modern Physics Letters A, 1994, 09, 211-224.	0.5	61
152	Electroweak supersymmetric quantum corrections to the top quark width. Nuclear Physics B, 1994, 427, 53-80.	0.9	31
153	Full one-loop renormalization of the ratio of neutral and charged current Fermi constants in supersymmetric extensions of the standard model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 254, 139-147.	1.5	9
154	The cosmological constant and the fate of the cosmon in Weyl conformal gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 228, 317-324.	1.5	36
155	Determination of quark and gluon vacuum condensates from τ-lepton decay data. Zeitschrift Für Physik C-Particles and Fields, 1988, 40, 63-75.	1.5	79
156	Radiative pion decay: Determination of FA(0) from Ï,,-lepton decay data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 208, 131-134.	1.5	22
157	New phase of QED?. Physical Review D, 1988, 37, 2492-2498.	1.6	32
158	A phenomenological analysis of the Weinberg sum rules and of the Ï€+ â^' Ï€0 mass difference. Nuclear Physics B, 1987, 281, 1-17.	0.9	53
159	Low-energy neutrino scattering: A probe of the ZWW interaction. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 197, 437-442.	1.5	22
160	Adjusting the cosmological constant dynamically: Cosmons and a new force weaker than gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 195, 183-190.	1,5	216
161	E6 based mechanism for the generation of fermion electric dipole moments: An application to the solar neutrino puzzle. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 189, 63-67.	1.5	1
162	Sneutrino counting. Nuclear Physics B, 1986, 268, 151-160.	0.9	8

#	Article	IF	CITATIONS
163	Superstring induced mass and magnetic moment of the neutrino and the time modulation of the solar neutrino flux. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1986, 182, 53-58.	1.5	7
164	Contribution to the Muon Anomaly from Superstring-Inspired Models. Physical Review Letters, 1986, 57, 2348-2350.	2.9	21
165	One-loop renormalization of the electroweak parameters in N = 1 supersymmetry. Nuclear Physics B, $1985, 253, 47-76$.	0.9	61
166	Radiative corrections to weak boson masses from supersymmetry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1984, 137, 257-260.	1.5	31
167	Two-photon production of squarks and sleptons. Zeitschrift FÃ $\frac{1}{4}$ r Physik C-Particles and Fields, 1983, 18, 185-187.	1.5	2
168	Radiative signal for light neutral supersymmetric particle production in e+eâ^' annihilation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1982, 114, 35-38.	1.5	20
169	Production of heavy charged Higgs particles at very high energies. Physical Review D, 1981, 23, 95-98.	1.6	2
170	Cosmographic approach to Running Vacuum dark energy models: New constraints using BAOs and Hubble diagrams at higher redshifts. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	18