
Martin S King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493090/publications.pdf Version: 2024-02-01

MADTIN S KINC

#	Article	IF	CITATIONS
1	Key features of inhibitor binding to the human mitochondrial pyruvate carrier hetero-dimer. Molecular Metabolism, 2022, 60, 101469.	3.0	8
2	Substrate binding in the mitochondrial ADP/ATP carrier is a step-wise process guiding the structural changes in the transport cycle. Nature Communications, 2022, 13, .	5.8	17
3	Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition. Theranostics, 2021, 11, 5077-5091.	4.6	12
4	A Single Cysteine Residue in the Translocation Pathway of the Mitosomal ADP/ATP Carrier from Cryptosporidium parvum Confers a Broad Nucleotide Specificity. International Journal of Molecular Sciences, 2020, 21, 8971.	1.8	5
5	The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology. Physiology, 2020, 35, 302-327.	1.6	77
6	Structural insight into mitochondrial β-barrel outer membrane protein biogenesis. Nature Communications, 2020, 11, 3290.	5.8	48
7	Expression and Purification of Membrane Proteins in Saccharomyces cerevisiae. Methods in Molecular Biology, 2020, 2127, 47-61.	0.4	8
8	Thermostability Assays: a Generic and Versatile Tool for Studying the Functional and Structural Properties of Membrane Proteins in Detergents. Methods in Molecular Biology, 2020, 2168, 105-121.	0.4	4
9	The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier. Cell, 2019, 176, 435-447.e15.	13.5	221
10	Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy–like disease. Genetics in Medicine, 2018, 20, 1224-1235.	1.1	31
11	How Detergent Impacts Membrane Proteins: Atomic-Level Views of Mitochondrial Carriers in Dodecylphosphocholine. Journal of Physical Chemistry Letters, 2018, 9, 933-938.	2.1	41
12	ltaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 2018, 556, 113-117.	13.7	1,115
13	Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1-7.	0.5	31
14	Concerns with yeast mitochondrial ADP/ATP carrier's integrity in DPC. Nature Structural and Molecular Biology, 2018, 25, 747-749.	3.6	11
15	Expanding the phenotype of de novo <i>SLC25A4</i> -linked mitochondrial disease to include mild myopathy. Neurology: Genetics, 2018, 4, e256.	0.9	20
16	Screening of candidate substrates and coupling ions of transporters by thermostability shift assays. ELife, 2018, 7, .	2.8	45
17	Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Scientific Reports, 2017, 7, 45383.	1.6	33
18	Mitochondrial ADP/ATP Carrier in Dodecylphosphocholine Binds Cardiolipins with Non-native Affinity. Biophysical Journal, 2017, 113, 2311-2315.	0.2	18

MARTIN S KING

#	Article	IF	CITATIONS
19	Modelling the free energy profile of the mitochondrial ADP/ATP carrier. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 906-914.	0.5	23
20	Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number. American Journal of Human Genetics, 2016, 99, 860-876.	2.6	93
21	Membrane Protein Production in Lactococcus lactis for Functional Studies. Methods in Molecular Biology, 2016, 1432, 79-101.	0.4	2
22	The transport mechanism of the mitochondrial ADP/ATP carrier. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2379-2393.	1.9	110
23	Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 14-22.	0.5	55
24	Trends in Thermostability Provide Information on the Nature of Substrate, Inhibitor, and Lipid Interactions with Mitochondrial Carriers. Journal of Biological Chemistry, 2015, 290, 8206-8217.	1.6	67
25	The mitochondrial dicarboxylate and 2â€oxoglutarate carriers do not transport glutathione. FEBS Letters, 2015, 589, 621-628.	1.3	49
26	Membrane Protein Expression in Lactococcus lactis. Methods in Enzymology, 2015, 556, 77-97.	0.4	22
27	Structure of subcomplex ll ² of mammalian respiratory complex I leads to new supernumerary subunit assignments. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12087-12092.	3.3	50
28	A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I. FEBS Letters, 2011, 585, 2318-2322.	1.3	26
29	Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron–electron resonance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1930-1935.	3.3	116
30	Reduction of Hydrophilic Ubiquinones by the Flavin in Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I) and Production of Reactive Oxygen Species. Biochemistry, 2009, 48, 2053-2062.	1.2	89
31	The production of reactive oxygen species by complex I. Biochemical Society Transactions, 2008, 36, 976-980.	1.6	262
32	Production of Reactive Oxygen Species by Complex I (NADH:Ubiquinone Oxidoreductase) from Escherichia coli and Comparison to the Enzyme from Mitochondria. Biochemistry, 2008, 47, 3964-3971.	1.2	109
33	Investigating the Properties of <i>Bacillus thuringiensis</i> Cry Proteins with Novel Loop Replacements Created Using Combinatorial Molecular Biology. Applied and Environmental Microbiology, 2008, 74, 3497-3511.	1.4	32