Mohammad Rafienia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the Morphological Effects of Hydroxyapatite Nanoparticles on the Rheological Properties and Printability of Hydroxyapatite/Polycaprolactone Nanocomposite Inks and Final Scaffold Features. 3D Printing and Additive Manufacturing, 2024, 11, 132-142.	2.9	4
2	Polycaprolactone/Gelatin/Hydroxyapatite nanocomposite scaffold seeded with Stem cells from human exfoliated deciduous teeth to enhance bone repair: <i>in vitro</i> and <i>in vivo</i> studies. Materials Technology, 2022, 37, 302-315.	3.0	16
3	Fabrication and characterisation of chitosan/polyvinyl alcohol-based transparent hydrogel films loaded with silver nanoparticles and sildenafil citrate for wound dressing applications. Materials Technology, 2022, 37, 355-365.	3.0	4
4	Synthesis and characterization of cellulose nanofibers/chitosan/cinnamon extract wound dressing with significant antibacterial and wound healing properties. Journal of the Iranian Chemical Society, 2022, 19, 1191-1202.	2.2	9
5	Recent advancement in electrode materials and fabrication, microfluidic designs, and self-powered systems for wearable non-invasive electrochemical glucose monitoring. Applied Materials Today, 2022, 26, 101350.	4.3	15
6	An in vitro and in vivo study of PCL/chitosan electrospun mat on polyurethane/propolis foam as a bilayer wound dressing. Materials Science and Engineering C, 2022, 135, 112667.	7.3	33
7	In Vitro Study of the Recruitment and Expansion of Mesenchymal Stem Cells at the Interface of a Cu-Doped PCL-Bioglass Scaffold. Biomimetics, 2022, 7, 19.	3.3	7
8	Fabrication and assessment of a novel hybrid scaffold consisted of polyurethane-gellan gum-hyaluronic acid-glucosamine for meniscus tissue engineering. International Journal of Biological Macromolecules, 2022, 203, 610-622.	7.5	9
9	Mesoporous silica@chitosan@gold nanoparticles as "on/off―optical biosensor and pH-sensitive theranostic platform against cancer. International Journal of Biological Macromolecules, 2022, 202, 241-255.	7.5	30
10	Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acid-targeted chitosan nanoparticles for murine triple-negative breast cancer treatment. Journal of Nanobiotechnology, 2022, 20, 169.	9.1	19
11	A study on the role of multi-walled carbon nanotubes on the properties of electrospun Poly(Caprolactone)/Poly(Glycerol sebacate) scaffold for nerve tissue applications. Materials Chemistry and Physics, 2022, 282, 125868.	4.0	12
12	A 3D macroporous and magnetic Mg2SiO4-CuFe2O4 scaffold for bone tissue regeneration: Surface modification, in vitro and in vivo studies. , 2022, 137, 212809.		12
13	Promoting keratocyte stem like cell proliferation and differentiation by aligned polycaprolactone-silk fibroin fibers containing Aloe vera. , 2022, 137, 212840.		5
14	Effects of lowâ€intensity pulsed ultrasound stimulation on cell seeded 3D hybrid scaffold as a novel strategy for meniscus regeneration: An in vitro study. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 812-824.	2.7	4
15	A novel flexible, conductive, and three-dimensional reduced graphene oxide/polyurethane scaffold for cell attachment and bone regeneration. Materials and Design, 2022, 221, 110955.	7.0	8
16	A 3D nanostructured calcium-aluminum-silicate scaffold with hierarchical meso-macroporosity for bone tissue regeneration: Fabrication, sintering behavior, surface modification and in vitro studies. Journal of the European Ceramic Society, 2021, 41, 941-962.	5.7	24
17	Novel bilayer electrospun poly(caprolactone)/ silk fibroin/ strontium carbonate fibrous nanocomposite membrane for guided bone regeneration. Journal of Applied Polymer Science, 2021, 138, 50264.	2.6	12
18	A ternary nanocomposite fibrous scaffold composed of poly(ε aprolactone)/Gelatin/Gehlenite (<scp>Ca₂Al₂SiO₇</scp>): Physical, chemical, and biological properties in vitro. Polymers for Advanced Technologies, 2021, 32, 582-598.	3.2	13

#	Article	IF	CITATIONS
19	Fabrication and characterization of glycerol/chitosan/polyvinyl alcohol-based transparent hydrogel films loaded with silver nanoparticles for antibacterial wound dressing applications. Advanced Biomedical Research, 2021, 10, 4.	0.5	12
20	Poly glycerol sebacate/ polycaprolactone/ carbon quantum dots fibrous scaffold as a multifunctional platform for cardiac tissue engineering. Materials Chemistry and Physics, 2021, 266, 124543.	4.0	23
21	Zn-substituted Mg2SiO4 nanoparticles-incorporated PCL-silk fibroin composite scaffold: A multifunctional platform towards bone tissue regeneration. Materials Science and Engineering C, 2021, 127, 112242.	7.3	28
22	Polyurethane-Nanolignin Composite Foam Coated with Propolis as a Platform for Wound Dressing: Synthesis and Characterization. Polymers, 2021, 13, 3191.	4.5	28
23	A bifunctional electrospun nanocomposite wound dressing containing surfactin and curcumin: In vivo studies. Materials Science and Engineering C, 2021, 129, 112362.	7.3	28
24	Studies of Polycaprolactone Nanofibrous Scaffolds Containing Novel Gehlenite Nanoparticles. Journal of Medical Signals and Sensors, 2021, 11, 131-137.	1.0	0
25	Novel electrospun polyurethane scaffolds containing bioactive glass nanoparticles. Bioinspired, Biomimetic and Nanobiomaterials, 2020, 9, 175-183.	0.9	4
26	Hierarchical porous Mg2SiO4-CoFe2O4 nanomagnetic scaffold for bone cancer therapy and regeneration: Surface modification and in vitro studies. Materials Science and Engineering C, 2020, 109, 110579.	7.3	39
27	Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. International Journal of Biological Macromolecules, 2020, 146, 627-637.	7.5	138
28	Electrospun captoprilâ€loaded <scp>PCL</scp> â€carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies. Polymers for Advanced Technologies, 2020, 31, 3302-3315.	3.2	21
29	The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques. Bio-Design and Manufacturing, 2020, 3, 281-306.	7.7	69
30	Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. International Journal of Biological Macromolecules, 2020, 161, 377-388.	7.5	51
31	A Novel Bilayer Wound Dressing Composed of a Dense Polyurethane/Propolis Membrane and a Biodegradable Polycaprolactone/Gelatin NanofibrousÂScaffold. Scientific Reports, 2020, 10, 3063.	3.3	117
32	A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. International Journal of Biological Macromolecules, 2020, 149, 467-476.	7.5	90
33	Application of electrospun polycaprolactone fibers embedding lignin nanoparticle for peripheral nerve regeneration: In vitro and in vivo study. International Journal of Biological Macromolecules, 2020, 159, 154-173.	7.5	63
34	On the Bioactivity and Mechanical Properties of Gehlenite Nanobioceramic: A Comparative Study. Journal of Medical Signals and Sensors, 2020, 10, 105-112.	1.0	7
35	A novel non-enzymatic biosensor based on Ti-metallic glass thin film: The blood glucose oxidation approach. Journal of Medical Signals and Sensors, 2020, 10, 35.	1.0	1
36	Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 607-615.	3.4	21

#	Article	IF	CITATIONS
37	Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(vinyl alcohol) and poly(glycerol sebacate) fibers. Materials Science and Engineering C, 2019, 104, 110005.	7.3	64
38	Reduced graphene oxide–reinforced gellan gum thermoresponsive hydrogels as a myocardial tissue engineering scaffold. Journal of Bioactive and Compatible Polymers, 2019, 34, 331-345.	2.1	22
39	Chondrogenesis of human adipose-derived mesenchymal stromal cells on the [devitalized costal cartilage matrix/poly(vinyl alcohol)/fibrin] hybrid scaffolds. European Polymer Journal, 2019, 118, 528-541.	5.4	27
40	In vitro and in vivo performance of a propolis-coated polyurethane wound dressing with high porosity and antibacterial efficacy. Colloids and Surfaces B: Biointerfaces, 2019, 178, 177-184.	5.0	76
41	Cornstarch-based wound dressing incorporated with hyaluronic acid and propolis: In vitro and in vivo studies. Carbohydrate Polymers, 2019, 216, 25-35.	10.2	76
42	Design and fabrication of poly (glycerol sebacate)â€based fibers for neural tissue engineering: Synthesis, electrospinning, and characterization. Polymers for Advanced Technologies, 2019, 30, 1427-1440.	3.2	55
43	Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Materials Science and Engineering C, 2019, 99, 1075-1091.	7.3	106
44	The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nanoâ€hydroxyapatite electrospun scaffold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 933-950.	3.4	48
45	Electrophoretically deposited mesoporous magnesium silicate with ordered nanopores as an antibiotic-loaded coating on surface-modified titanium. Materials Science and Engineering C, 2019, 96, 765-775.	7.3	42
46	Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering. Materials Science and Engineering C, 2019, 97, 141-155.	7.3	40
47	A review of controlled drug delivery systems based on cells and cell membranes. Journal of Medical Signals and Sensors, 2019, 9, 181.	1.0	14
48	Evaluation of mechanical properties and cell viability of poly (3-hydroxybutyrate)-chitosan/Al ₂ O ₃ nanocomposite scaffold for cartilage tissue engineering. Journal of Medical Signals and Sensors, 2019, 9, 111.	1.0	29
49	Physicochemical, Antimicrobial and Cytotoxic Characteristics of Corn Starch Film Containing Propolis for Wound Dressing. Journal of Polymers and the Environment, 2018, 26, 3345-3351.	5.0	20
50	Gehlenite nanobioceramic: Sol-gel synthesis, characterization, and in vitro assessment of its bioactivity. Materials Letters, 2018, 225, 89-92.	2.6	26
51	Preparation and in vitro evaluation of polycaprolactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications. Materials Science and Engineering C, 2018, 90, 236-247.	7.3	40
52	Methotrexate-conjugated to polymer quantum dot for cytotoxicity effect improved against MCF-7 and Hela cells. Medicinal Chemistry Research, 2018, 27, 1578-1588.	2.4	6
53	Multifunctional nanoporous magnetic zinc silicate-ZnFe2O4 core-shell composite for bone tissue engineering applications. Ceramics International, 2018, 44, 11798-11806.	4.8	46
54	Development of electrospun poly (vinyl alcohol)â€based bionanocomposite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 1111-1120.	4.0	59

Mohammad Rafienia

#	Article	IF	CITATIONS
55	Fabrication and characterization of electrospun poly lactic- <i>co</i> -glycolic acid/zeolite nanocomposite scaffolds using bone tissue engineering. Journal of Bioactive and Compatible Polymers, 2018, 33, 63-78.	2.1	21
56	Fabrication of Porous Mg-Zn Scaffold through Modified Replica Method for Bone Tissue Engineering. Journal of Bionic Engineering, 2018, 15, 907-913.	5.0	9
57	Assessing the physical and mechanical properties of poly 3â€hydroxybutyrateâ€chitosanâ€multiâ€walled carbon nanotube/silk nano–micro composite scaffold for longâ€term healing tissue engineering applications. Micro and Nano Letters, 2018, 13, 829-834.	1.3	7
58	Incorporation of nanohydroxyapatite and vitamin D3 into electrospun PCL/Gelatin scaffolds: The influence on the physical and chemical properties and cell behavior for bone tissue engineering. Polymers for Advanced Technologies, 2018, 29, 451-462.	3.2	67
59	Solvothermal synthesis of magnetic spinel ferrites. Journal of Medical Signals and Sensors, 2018, 8, 108.	1.0	3
60	Solvothermal synthesis of magnetic spinel ferrites. Journal of Medical Signals and Sensors, 2018, 8, 108.	1.0	44
61	Solvothermal Synthesis of Magnetic Spinel Ferrites. Journal of Medical Signals and Sensors, 2018, 8, 108-118.	1.0	3
62	Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surface and Coatings Technology, 2017, 321, 171-179.	4.8	103
63	Fabrication and Characterization of Polyphosphazene/Calcium Phosphate Scaffolds Containing Chitosan Microspheres for Sustained Release of Bone Morphogenetic Protein 2 in Bone Tissue Engineering. Tissue Engineering and Regenerative Medicine, 2017, 14, 525-538.	3.7	15
64	Ultrasensitive aflatoxin B1 assay basedÂon FRET from aptamer labelled fluorescent polymer dots to silver nanoparticles labeled with complementary DNA. Mikrochimica Acta, 2017, 184, 4655-4662.	5.0	34
65	Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering. Materials Science and Engineering C, 2017, 71, 240-251.	7.3	64
66	Copper-doped and copper-free bioactive glass nanopowders cytotoxicity and antibacterial activity assessment. Scientia Iranica, 2017, 24, 1706-1716.	0.4	6
67	Electrospun Polycaprolactone/lignin-based Nanocomposite as a Novel Tissue Scaffold for Biomedical Applications. Journal of Medical Signals and Sensors, 2017, 7, 228.	1.0	79
68	Effects of nanozeolite/starch thermoplastic hydrogels on wound healing. Journal of Research in Medical Sciences, 2017, 22, 110.	0.9	19
69	Electrospun Polycaprolactone/lignin-based Nanocomposite as a Novel Tissue Scaffold for Biomedical Applications. Journal of Medical Signals and Sensors, 2017, 7, 228-238.	1.0	19
70	Fabrication of Poly Hydroxybutyrate-Polyethylene Glycol-Folic Acid Nanoparticles Loaded by Paclitaxel. Current Drug Delivery, 2016, 13, 57-64.	1.6	9
71	Ordered mesoporous magnesium silicate with uniform nanochannels as a drug delivery system: The effect of calcination temperature on drug delivery rate. Ceramics International, 2016, 42, 17185-17191.	4.8	48
72	Incorporation of zeolite and silica nanoparticles into electrospun PVA/collagen nanofibrous scaffolds: The influence on the physical, chemical properties and cell behavior. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 457-465.	3.4	35

Mohammad Rafienia

#	Article	IF	CITATIONS
73	Incorporation of chitosan nanoparticles into silk fibroin-based porous scaffolds: Chondrogenic differentiation of stem cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 202-209.	3.4	19
74	Surfactant-assisted sol–gel synthesis of forsterite nanoparticles as a novel drug delivery system. Materials Science and Engineering C, 2016, 58, 737-741.	7.3	47
75	Synthesis and In vitro Evaluation of Electrodeposited Barium Titanate Coating on Ti6Al4V. Journal of Medical Signals and Sensors, 2016, 6, 106-11.	1.0	4
76	Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydrate Polymers, 2014, 108, 232-238.	10.2	143
77	Investigation on bioactivity and cytotoxicity of mesoporous nano-composite MCM-48/hydroxyapatite for ibuprofen drug delivery. Ceramics International, 2014, 40, 7355-7362.	4.8	61
78	Silk fibroinâ€chondroitin sulfateâ€alginate porous scaffolds: Structural properties and <i>in vitro</i> studies. Journal of Applied Polymer Science, 2014, 131, .	2.6	23
79	Double-walled microspheres loaded with meglumine antimoniate: preparation, characterization and <i>in vitro</i> release study. Drug Development and Industrial Pharmacy, 2014, 40, 701-710.	2.0	11
80	Coated urinary catheter by PEG/PVA/gentamicin with drug delivery capability against hospital infection. Iranian Polymer Journal (English Edition), 2013, 22, 75-83.	2.4	12
81	Synthesis and characterization of glutaraldehyde-based crosslinked gelatin as a local hemostat sponge in surgery: An in vitro study. Bio-Medical Materials and Engineering, 2013, 23, 211-224.	0.6	37
82	Chitosan microparticles loaded with exotoxin A subunit antigen for intranasal vaccination against Pseudomonas aeruginosa: An in vitro study. Carbohydrate Polymers, 2011, 83, 1854-1861.	10.2	30
83	APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN CONTROLLED DRUG DELIVERY SYSTEMS. Applied Artificial Intelligence, 2010, 24, 807-820.	3.2	26
84	Investigation of drug release and ¹ Hâ€NMR analysis of the <i>in situ</i> forming systems based on poly(lactideâ€ <i>co</i> â€glycolide). Polymers for Advanced Technologies, 2009, 20, 48-57.	3.2	5
85	Influence of Poly (Lactide-Co-Glycolide) Type and Gamma Irradiation on the Betamethasone Acetate Release from the In Situ Forming Systems. Current Drug Delivery, 2009, 6, 184-191.	1.6	9
86	A study of starch addition on burst effect and diameter of polyurethane microspheres containing theophylline. Polymers for Advanced Technologies, 2008, 19, 167-170.	3.2	10
87	Investigation of Drug Release from Biodegradable Polymeric Delivery System by Infrared Spectrometry. International Journal of Polymer Analysis and Characterization, 2008, 13, 353-368.	1.9	4
88	Synthesis, Characterization and Preliminary Investigation of Blood Compatibility of Novel Epoxy-modified Polyurethane Networks. Journal of Bioactive and Compatible Polymers, 2008, 23, 276-300.	2.1	18
89	In Vitro Evaluation of Drug Solubility and Gamma Irradiation on the Release of Betamethasone under Simulated In Vivo Conditions. Journal of Bioactive and Compatible Polymers, 2007, 22, 443-459.	2.1	13
90	Preparation and Characterization of Polyurethane Microspheres Containing Theophylline. Journal of Bioactive and Compatible Polymers, 2006, 21, 341-349.	2.1	10

#	Article	IF	CITATIONS
91	Effect of Freezing and Thawing Process on Betamethasone Acetate Release from Polyvinyl Alcohol Nanospheres. Solid State Phenomena, 0, 151, 159-165.	0.3	3