Ajay P Manuel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4930822/ajay-p-manuel-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10	238	7	11
papers	citations	h-index	g-index
11	343 ext. citations	7.7	3.91
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
10	TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting. <i>Catalysts</i> , 2021 , 11, 1374	4	1
9	Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@CN Core-Shell Nanowires. <i>ACS Applied Materials & Dynamics and Study of Carrier Dynamics in CdS@CN Core-Shell Nanowires. ACS Applied Materials & Dynamics and Study of Carrier Dynamics in CdS@CN Core-Shell Nanowires. ACS Applied Materials & Dynamics and Study of Carrier Dynamics in CdS@CN Core-Shell Nanowires. ACS Applied Materials & Dynamics and Study of Carrier Dynamics in CdS@CN Core-Shell Nanowires. ACS Applied Materials & Dynamics and Study of Carrier Dynamics in CdS@CN Core-Shell Nanowires.</i>	9.5	11
8	Hot Electrons in TiO-Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. <i>Nanomaterials</i> , 2021 , 11,	5.4	15
7	Nonlithographic Formation of TaO Nanodimple Arrays Using Electrochemical Anodization and Their Use in Plasmonic Photocatalysis for Enhancement of Local Field and Catalytic Activity. <i>ACS Applied Materials & Mat</i>	9.5	4
6	Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivity of CO Photoreduction toward C Products. <i>ACS Applied Materials & Distributed Materials & Distri</i>	9.5	16
5	Plasmonic photocatalysis and SERS sensing using ellipsometrically modeled Ag nanoisland substrates. <i>Nanotechnology</i> , 2020 , 31, 365301	3.4	12
4	CVD grown nitrogen doped graphene is an exceptional visible-light driven photocatalyst for surface catalytic reactions. <i>2D Materials</i> , 2020 , 7, 015002	5.9	6
3	Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arrays Sensitized by P-Doped C3N4 Quantum Dots. <i>Advanced Optical Materials</i> , 2020 , 8, 1901275	8.1	34
2	Plexcitonics Ifundamental principles and optoelectronic applications. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 1821-1853	7.1	51
1	High rate CO2 photoreduction using flame annealed TiO2 nanotubes. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 522-536	21.8	88