
Dorit Schuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Molecular Biology and Evolution, 2018, 35, 1712-1727.	3.5	214
2	Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiology Letters, 2004, 231, 19-26.	0.7	138
3	Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study. FEMS Yeast Research, 2005, 5, 959-969.	1.1	122
4	Biodiversity ofSaccharomycesyeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Research, 2007, 7, 317-329.	1.1	114
5	Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics, 2008, 9, 524.	1.2	111
6	Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiology Ecology, 2005, 51, 167-177.	1.3	102
7	The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Applied Microbiology and Biotechnology, 2005, 68, 292-304.	1.7	88
8	Genetic Diversity and Population Structure of Saccharomyces cerevisiae Strains Isolated from Different Grape Varieties and Winemaking Regions. PLoS ONE, 2012, 7, e32507.	1.1	81
9	The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Applied Microbiology and Biotechnology, 2011, 89, 271-280.	1.7	79
10	The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis. Antonie Van Leeuwenhoek, 2007, 91, 137-150.	0.7	61
11	Yeast Biodiversity in Vineyard Environments Is Increased by Human Intervention. PLoS ONE, 2016, 11, e0160579.	1.1	50
12	Association between Grape Yeast Communities and the Vineyard Ecosystems. PLoS ONE, 2017, 12, e0169883.	1.1	48
13	Biochemical and Molecular Characterization of <i>Saccharomyces cerevisiae</i> Strains Obtained from Sugar-Cane Juice Fermentations and Their Impact in Cachacl§a Production. Applied and Environmental Microbiology, 2008, 74, 693-701.	1.4	42
14	Genetic characterization of commercialSaccharomyces cerevisiae isolates recovered from vineyard environments. Yeast, 2007, 24, 625-636.	0.8	40
15	Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris. Biochemical Journal, 2003, 376, 781-787.	1.7	35
16	Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. BMC Genomics, 2017, 18, 455.	1.2	33
17	Intrastrain genomic and phenotypic variability of the commercial <i>Saccharomyces cerevisiae</i> strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Research, 2015, 15, fov063.	1.1	32
18	Effects of acetic acid, ethanol, and SO2 on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains. Applied Microbiology and Biotechnology, 2010, 87, 1317-1326.	1.7	27

DORIT SCHULLER

#	Article	IF	CITATIONS
19	New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking. Food Chemistry, 2016, 211, 509-520.	4.2	22
20	Computational Models for Prediction of Yeast Strain Potential for Winemaking from Phenotypic Profiles. PLoS ONE, 2013, 8, e66523.	1.1	21
21	Computational models reveal genotype–phenotype associations in <i>Saccharomyces cerevisiae</i> . Yeast, 2014, 31, 265-277.	0.8	20
22	Differentiation of Saccharomyces cerevisiae populations from vineyards of the Azores Archipelago: Geography vs Ecology. Food Microbiology, 2018, 74, 151-162.	2.1	20
23	Genotyping of <i>Saccharomyces cerevisiae</i> strains by interdelta sequence typing using automated microfluidics. Electrophoresis, 2011, 32, 1447-1455.	1.3	19
24	The influence of Dekkera bruxellensis on the transcriptome of Saccharomyces cerevisiae and on the aromatic profile of synthetic wine must. FEMS Yeast Research, 2017, 17, .	1.1	19
25	Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains. BMC Genomics, 2011, 12, 201.	1.2	16
26	Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production. FEMS Yeast Research, 2017, 17, .	1.1	15
27	Deficiency of Pkc1 activity affects glycerol metabolism in. FEMS Yeast Research, 2005, 5, 767-776.	1.1	11
28	Better Yeast for Better Wine — Genetic Improvement of Saccharomyces Cerevisiae Wine Strains. , 2010, , 1-49.		10
29	Starmerella vitis f.a., sp. nov., a yeast species isolated from flowers and grapes. Antonie Van Leeuwenhoek, 2020, 113, 1289-1298.	0.7	8
30	Clavispora santaluciae f.a., sp. nov., a novel ascomycetous yeast species isolated from grapes. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 6307-6312.	0.8	6
31	Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection. Nature Precedings, 2008, , .	0.1	0
32	Populational analysis of Saccharomyces cerevisiae strains from different appellations of origin and grape varieties by microsatellite analysis Nature Precedings, 2008, , .	0.1	0