Marcelo U Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4930279/publications.pdf

Version: 2024-02-01

246 papers

9,967 citations

52 h-index 80 g-index

261 all docs

261 docs citations

times ranked

261

7606 citing authors

#	Article	IF	CITATIONS
1	Epidemiology of COVID-19 after Emergence of SARS-CoV-2 Gamma Variant, Brazilian Amazon, 2020–2021. Emerging Infectious Diseases, 2022, 28, .	4.3	17
2	Relative contribution of low-density and asymptomatic infections to Plasmodium vivax transmission in the Amazon: pooled analysis of individual participant data from population-based cross-sectional surveys. The Lancet Regional Health Americas, 2022, 9, 100169.	2.6	14
3	An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opinion on Drug Metabolism and Toxicology, 2022, 18, 39-59.	3.3	5
4	Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold. Journal of Theoretical Biology, 2022, 540, 111063.	1.7	75
5	Humanized mice for investigating sustained Plasmodium vivax blood-stage infections and transmission. Nature Communications, 2022, 13, .	12.8	10
6	SARS-CoV-2 seropositivity and COVID-19 among 5 years-old Amazonian children and their association with poverty and food insecurity. PLoS Neglected Tropical Diseases, 2022, 16, e0010580.	3.0	1
7	Mansonella ozzardi. Trends in Parasitology, 2021, 37, 90-91.	3.3	13
8	Monitoring Plasmodium vivax resistance to antimalarials: Persisting challenges and future directions. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 15, 9-24.	3.4	33
9	Unintended Consequences of â€~Development' in the Amazon: Commercial Aquaculture and Malaria in Mâncio Lima, Brazil. , 2021, , 387-410.		3
10	Plasmodium vivax infection compromises reticulocyte stability. Nature Communications, 2021, 12, 1629.	12.8	19
11	<i>Plasmodium simium</i> : Population Genomics Reveals the Origin of a Reverse Zoonosis. Journal of Infectious Diseases, 2021, 224, 1950-1961.	4.0	19
11			19
	Infectious Diseases, 2021, 224, 1950-1961. Interacting Epidemics in Amazonian Brazil: Prior Dengue Infection Associated With Increased Coronavirus Disease 2019 (COVID-19) Risk in a Population-Based Cohort Study. Clinical Infectious	4.0	
12	Infectious Diseases, 2021, 224, 1950-1961. Interacting Epidemics in Amazonian Brazil: Prior Dengue Infection Associated With Increased Coronavirus Disease 2019 (COVID-19) Risk in a Population-Based Cohort Study. Clinical Infectious Diseases, 2021, 73, 2045-2054.	4.0 5.8	18
12	Infectious Diseases, 2021, 224, 1950-1961. Interacting Epidemics in Amazonian Brazil: Prior Dengue Infection Associated With Increased Coronavirus Diseases 2019 (COVID-19) Risk in a Population-Based Cohort Study. Clinical Infectious Diseases, 2021, 73, 2045-2054. Reply to Author. Clinical Infectious Diseases, 2021, , . Low-level Plasmodium vivax exposure, maternal antibodies, and anemia in early childhood: Population-based birth cohort study in Amazonian Brazil. PLoS Neglected Tropical Diseases, 2021, 15,	4.0 5.8 5.8	18
12 13 14	Interacting Epidemics in Amazonian Brazil: Prior Dengue Infection Associated With Increased Coronavirus Disease 2019 (COVID-19) Risk in a Population-Based Cohort Study. Clinical Infectious Diseases, 2021, 73, 2045-2054. Reply to Author. Clinical Infectious Diseases, 2021, , . Low-level Plasmodium vivax exposure, maternal antibodies, and anemia in early childhood: Population-based birth cohort study in Amazonian Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009568. Flowcytometric and ImageStream RNA-FISH gene expression, quantification and phenotypic characterization of blood and liver stages from human malaria species. Journal of Infectious Diseases,	4.0 5.8 5.8 3.0	18 0 7
12 13 14 15	Infectious Diseases, 2021, 224, 1950-1961. Interacting Epidemics in Amazonian Brazil: Prior Dengue Infection Associated With Increased Coronavirus Disease 2019 (COVID-19) Risk in a Population-Based Cohort Study. Clinical Infectious Diseases, 2021, 73, 2045-2054. Reply to Author. Clinical Infectious Diseases, 2021, . Low-level Plasmodium vivax exposure, maternal antibodies, and anemia in early childhood: Population-based birth cohort study in Amazonian Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009568. Flowcytometric and ImageStream RNA-FISH gene expression, quantification and phenotypic characterization of blood and liver stages from human malaria species. Journal of Infectious Diseases, 2021, .	4.0 5.8 5.8 3.0	18 0 7 3

#	Article	IF	Citations
19	The immunology of <i>Plasmodium vivax</i> malaria. Immunological Reviews, 2020, 293, 163-189.	6.0	38
20	Strains used in whole organism Plasmodium falciparum vaccine trials differ in genome structure, sequence, and immunogenic potential. Genome Medicine, 2020, 12, 6.	8.2	61
21	Kynurenine elevation correlates with T regulatory cells increase in acute <i>Plasmodium vivax</i> infection: A pilot study. Parasite Immunology, 2020, 42, e12689.	1.5	11
22	Field Efficacy of VectoMax FG and VectoLex CG Biological Larvicides for Malaria Vector Control in Northwestern Brazil. Journal of Medical Entomology, 2020, 57, 942-946.	1.8	11
23	Keras R-CNN: library for cell detection in biological images using deep neural networks. BMC Bioinformatics, 2020, 21, 300.	2.6	44
24	Quantifying and preventing Plasmodium vivax recurrences in primaquine-untreated pregnant women: An observational and modeling study in Brazil. PLoS Neglected Tropical Diseases, 2020, 14, e0008526.	3.0	16
25	Plasmodium vivax transcriptional profiling of low input cryopreserved isolates through the intraerythrocytic development cycle. PLoS Neglected Tropical Diseases, 2020, 14, e0008104.	3.0	17
26	Modelling the epidemiology of residual Plasmodium vivax malaria in a heterogeneous host population: A case study in the Amazon Basin. PLoS Computational Biology, 2020, 16, e1007377.	3.2	19
27	Molecular evidence of sustained urban malaria transmission in Amazonian Brazil, 2014–2015. Epidemiology and Infection, 2020, 148, e47.	2.1	8
28	Cohort profile: the Maternal and Child Health and Nutrition in Acre, Brazil, birth cohort study (MINA-Brazil). BMJ Open, 2020, 10, e034513.	1.9	34
29	The risk of Plasmodium vivax parasitaemia after P. falciparum malaria: An individual patient data meta-analysis from the WorldWide Antimalarial Resistance Network. PLoS Medicine, 2020, 17, e1003393.	8.4	32
30	Population genomics reveals the expansion of highly inbred Plasmodium vivax lineages in the main malaria hotspot of Brazil. PLoS Neglected Tropical Diseases, 2020, 14, e0008808.	3.0	18
31	A Retrospective Survey of Rodent-borne Viruses in Rural Populations of Brazilian Amazon. Revista Da Sociedade Brasileira De Medicina Tropical, 2020, 53, e20190511.	0.9	O
32	Human mobility and urban malaria risk in the main transmission hotspot of Amazonian Brazil. PLoS ONE, 2020, 15, e0242357.	2.5	18
33	Title is missing!. , 2020, 16, e1007377.		0
34	Title is missing!. , 2020, 16, e1007377.		0
35	Title is missing!. , 2020, 16, e1007377.		0
36	Title is missing!. , 2020, 16, e1007377.		0

#	Article	IF	Citations
37	Title is missing!. , 2020, 16, e1007377.		O
38	Title is missing!. , 2020, 17, e1003393.		0
39	Title is missing!. , 2020, 17, e1003393.		0
40	Title is missing!., 2020, 17, e1003393.		0
41	Title is missing!. , 2020, 17, e1003393.		0
42	Title is missing!. , 2020, 17, e1003393.		0
43	Title is missing!. , 2020, 14, e0008526.		0
44	Title is missing!. , 2020, 14, e0008526.		0
45	Title is missing!. , 2020, 14, e0008526.		0
46	Statistical modeling of surveillance data to identify correlates of urban malaria risk: A population-based study in the Amazon Basin. PLoS ONE, 2019, 14, e0220980.	2.5	19
47	In Silico Identification of Novel Biomarkers and Development of New Rapid Diagnostic Tests for the Filarial Parasites Mansonella perstans and Mansonella ozzardi. Scientific Reports, 2019, 9, 10275.	3.3	24
48	Malaria Situation in Latin America and the Caribbean: Residual and Resurgent Transmission and Challenges for Control and Elimination. Methods in Molecular Biology, 2019, 2013, 57-70.	0.9	26
49	Apical membrane protein 1â€specific antibody profile and temporal changes in peripheral blood Bâ€cell populations in <i>Plasmodium vivax</i> malaria. Parasite Immunology, 2019, 41, e12662.	1.5	12
50	High prevalence of gestational night blindness and maternal anemia in a population-based survey of Brazilian Amazonian postpartum women. PLoS ONE, 2019, 14, e0219203.	2.5	3
51	Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. Nature Microbiology, 2019, 4, 1486-1496.	13.3	52
52	Complement Receptor 1 availability on red blood cell surface modulates Plasmodium vivax invasion of human reticulocytes. Scientific Reports, 2019, 9, 8943.	3.3	14
53	Generation of an immortalized erythroid progenitor cell line from peripheral blood: A model system for the functional analysis of Plasmodium spp. invasion. American Journal of Hematology, 2019, 94, 963-974.	4.1	31
54	Identification and Characterization of Functional Human Monoclonal Antibodies to <i>Plasmodium vivax</i> Duffy-Binding Protein. Journal of Immunology, 2019, 202, 2648-2660.	0.8	26

#	Article	IF	CITATIONS
55	Monitoring the Efficacy of Chloroquine-Primaquine Therapy for Uncomplicated Plasmodium vivax Malaria in the Main Transmission Hot Spot of Brazil. Antimicrobial Agents and Chemotherapy, 2019, 63,	3.2	31
56	Leishmaniasis: current challenges and prospects for elimination with special focus on the South Asian region. Parasitology, 2018, 145, 425-429.	1.5	34
57	Enhanced Ex Vivo Plasmodium vivax Intraerythrocytic Enrichment and Maturation for Rapid and Sensitive Parasite Growth Assays. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	40
58	Human migration and the spread of malaria parasites to the New World. Scientific Reports, 2018, 8, 1993.	3.3	76
59	Transferrin receptor 1 is a reticulocyte-specific receptor for $\langle i \rangle$ Plasmodium vivax $\langle i \rangle$. Science, 2018, 359, 48-55.	12.6	158
60	Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infectious Diseases, The, 2018, 18, e1-e13.	9.1	92
61	Genetic sequence characterization and naturally acquired immune response to Plasmodium vivax Rhoptry Neck Protein 2 (PvRON2). Malaria Journal, 2018, 17, 401.	2.3	6
62	In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate. Malaria Journal, 2018, 17, 20.	2.3	6
63	Identification and Immunological Characterization of the Ligand Domain of Plasmodium vivax Reticulocyte Binding Protein 1a. Journal of Infectious Diseases, 2018, 218, 1110-1118.	4.0	15
64	Bone Marrow Is a Major Parasite Reservoir in Plasmodium vivax Infection. MBio, 2018, 9, .	4.1	141
65	CD39 and immune regulation in a chronic helminth infection: The puzzling case of Mansonella ozzardi. PLoS Neglected Tropical Diseases, 2018, 12, e0006327.	3.0	11
66	The Hidden Burden of Plasmodium vivax Malaria in Pregnancy in the Amazon: An Observational Study in Northwestern Brazil. American Journal of Tropical Medicine and Hygiene, 2018, 99, 73-83.	1.4	37
67	Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Neglected Tropical Diseases, 2017, 11, e0005824.	3.0	47
68	Challenges for malaria elimination in Brazil. Malaria Journal, 2016, 15, 284.	2.3	146
69	Little Polymorphism at the K13 Propeller Locus in Worldwide Plasmodium falciparum Populations Prior to the Introduction of Artemisinin Combination Therapies. Antimicrobial Agents and Chemotherapy, 2016, 60, 3340-3347.	3.2	18
70	No Clinical or Molecular Evidence of Plasmodium falciparum Resistance to Artesunate–Mefloquine in Northwestern Brazil. American Journal of Tropical Medicine and Hygiene, 2016, 95, 148-154.	1.4	21
71	Naturally Acquired Binding-Inhibitory Antibodies to <i>Plasmodium vivax</i> Duffy Binding Protein and Clinical Immunity to Malaria in Rural Amazonians. Journal of Infectious Diseases, 2016, 214, 1539-1546.	4.0	42
72	Expressed var gene repertoire and variant surface antigen diversity in a shrinking Plasmodium falciparum population. Experimental Parasitology, 2016, 170, 90-99.	1.2	5

#	Article	IF	CITATIONS
73	Infection of laboratory colonies of Anopheles mosquitoes with Plasmodium vivax from cryopreserved clinical isolates. International Journal for Parasitology, 2016, 46, 679-683.	3.1	17
74	Surface expression of inhibitory (CTLA-4) and stimulatory (OX40) receptors by CD4+ regulatory T cell subsets circulating in human malaria. Microbes and Infection, 2016, 18, 639-648.	1.9	20
75	Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nature Genetics, 2016, 48, 953-958.	21.4	194
76	Genomic analysis of local variation and recent evolution in Plasmodium vivax. Nature Genetics, 2016, 48, 959-964.	21.4	169
77	<i>Mansonella ozzardi</i> : a neglected New World filarial nematode. Pathogens and Global Health, 2016, 110, 97-107.	2.3	35
78	Independent Origin and Global Distribution of Distinct Plasmodium vivax Duffy Binding Protein Gene Duplications. PLoS Neglected Tropical Diseases, 2016, 10, e0005091.	3.0	48
79	Reactive Case Detection for Plasmodium vivax Malaria Elimination in Rural Amazonia. PLoS Neglected Tropical Diseases, 2016, 10, e0005221.	3.0	24
80	No longer a deadly encounter?. Pathogens and Global Health, 2015, 109, 307-308.	2.3	0
81	Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Neglected Tropical Diseases, 2015, 9, e0003872.	3.0	59
82	A new model for the origins of allelic dimorphism in Plasmodium falciparum. Parasitology International, 2015, 64, 229-237.	1.3	4
83	Challenges forPlasmodium vivaxmalaria elimination in the genomics era. Pathogens and Global Health, 2015, 109, 89-90.	2.3	11
84	Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections. PLoS Neglected Tropical Diseases, 2015, 9, e0003539.	3.0	90
85	Genetic diversity of <i>Plasmodium vivax </i> over time and space: a community-based study in rural Amazonia. Parasitology, 2015, 142, 374-384.	1.5	27
86	Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research. American Journal of Tropical Medicine and Hygiene, 2015, 93, 87-98.	1.4	22
87	Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. American Journal of Tropical Medicine and Hygiene, 2015, 93, 79-86.	1.4	80
88	Urban Malaria: Understanding its Epidemiology, Ecology, and Transmission Across Seven Diverse ICEMR Network Sites. American Journal of Tropical Medicine and Hygiene, 2015, 93, 110-123.	1.4	79
89	Isolation and Characterization of Mayaro Virus from a Human in Acre, Brazil. American Journal of Tropical Medicine and Hygiene, 2015, 92, 401-404.	1.4	40
90	Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 534-539.	1.6	58

#	Article	IF	Citations
91	Using Mitochondrial Genome Sequences to Track the Origin of Imported Plasmodium vivax Infections Diagnosed in the United States. American Journal of Tropical Medicine and Hygiene, 2014, 90, 1102-1108.	1.4	30
92	The Sri Lankan paradox: high genetic diversity in Plasmodium vivax populations despite decreasing levels of malaria transmission. Parasitology, 2014, 141, 880-890.	1.5	55
93	Epidemiology of Disappearing Plasmodium vivax Malaria: A Case Study in Rural Amazonia. PLoS Neglected Tropical Diseases, 2014, 8, e3109.	3.0	86
94	Fucosylated Chondroitin Sulfate Inhibits Plasmodium falciparum Cytoadhesion and Merozoite Invasion. Antimicrobial Agents and Chemotherapy, 2014, 58, 1862-1871.	3.2	28
95	Tracking malaria parasites in the eradication era. Trends in Parasitology, 2014, 30, 465-466.	3.3	11
96	Hepatitis A and E seroprevalence and associated risk factors: a community-based cross-sectional survey in rural Amazonia. BMC Infectious Diseases, 2014, 14, 458.	2.9	42
97	Parasite virulence, co-infections and cytokine balance in malaria. Pathogens and Global Health, 2014, 108, 173-178.	2.3	30
98	Higher microsatellite diversity in Plasmodium vivax than in sympatric Plasmodium falciparum populations in Pursat, Western Cambodia. Experimental Parasitology, 2013, 134, 318-326.	1.2	52
99	Microsatellite Analysis of Malaria Parasites. Methods in Molecular Biology, 2013, 1006, 247-258.	0.9	9
100	Red Blood Cell Polymorphism and Susceptibility to Plasmodium vivax. Advances in Parasitology, 2013, 81, 27-76.	3.2	83
101	Single-Nucleotide Polymorphism and Copy Number Variation of the Multidrug Resistance-1 Locus of Plasmodium vivax: Local and Global Patterns. American Journal of Tropical Medicine and Hygiene, 2012, 87, 813-821.	1.4	29
102	Modeling the Effects of Relapse in the Transmission Dynamics of Malaria Parasites. Journal of Parasitology Research, 2012, 2012, 1-8.	1.2	32
103	Plasmodium vivax: Reverse transcriptase real-time PCR for gametocyte detection and quantitation in clinical samples. Experimental Parasitology, 2012, 132, 348-354.	1.2	35
104	Geographic differentiation of polymorphism in the Plasmodium falciparum malaria vaccine candidate gene SERA5. Vaccine, 2012, 30, 1583-1593.	3.8	28
105	Amazonian malaria: Asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta Tropica, 2012, 121, 281-291.	2.0	120
106	Whole genome sequencing analysis of Plasmodium vivax using whole genome capture. BMC Genomics, 2012, 13, 262.	2.8	46
107	Underlying Factors Associated with Anemia in Amazonian Children: A Population-Based, Cross-Sectional Study. PLoS ONE, 2012, 7, e36341.	2.5	85
108	Cytokine Balance in Human Malaria: Does Plasmodium vivax Elicit More Inflammatory Responses than Plasmodium falciparum?. PLoS ONE, 2012, 7, e44394.	2.5	70

#	Article	lF	CITATIONS
109	Worldwide sequence conservation of transmission-blocking vaccine candidate Pvs230 in Plasmodium vivax. Vaccine, 2011, 29, 4308-4315.	3.8	35
110	Limited Geographical Origin and Global Spread of Sulfadoxine-Resistant dhps Alleles in Plasmodium falciparum Populations. Journal of Infectious Diseases, 2011, 204, 1980-1988.	4.0	74
111	Fy ^a /Fy ^b antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to <i>Plasmodium vivax</i> malaria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20113-20118.	7.1	116
112	Molecular markers and genetic diversity of Plasmodium vivax. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 12-26.	1.6	28
113	Lacunas na área de pesquisa e desafios para o controle da malária no Brasil. Cadernos De Saude Publica, 2011, 27, 2284-2286.	1.0	3
114	Seroprevalence of orthopoxvirus in an Amazonian rural village, Acre, Brazil. Archives of Virology, 2010, 155, 1139-1144.	2.1	28
115	Plasmodium falciparum Accompanied the Human Expansion out of Africa. Current Biology, 2010, 20, 1283-1289.	3.9	121
116	Population genetic analysis of large sequence polymorphisms in Plasmodium falciparum blood-stage antigens. Infection, Genetics and Evolution, 2010, 10, 200-206.	2.3	20
117	Evolutionary dynamics of the immunodominant repeats of the Plasmodium vivax malaria-vaccine candidate circumsporozoite protein (CSP). Infection, Genetics and Evolution, 2010, 10, 298-303.	2.3	22
118	Epidemiology and control of frontier malaria in Brazil: lessons from community-based studies in rural Amazonia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2010, 104, 343-350.	1.8	56
119	Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies. BMC Genetics, 2010, 11, 65.	2.7	46
120	Geographic Structure of Plasmodium vivax: Microsatellite Analysis of Parasite Populations from Sri Lanka, Myanmar, and Ethiopia. American Journal of Tropical Medicine and Hygiene, 2010, 82, 235-242.	1.4	88
121	CD4 ⁺ CD25 ⁺ Foxp3 ⁺ Regulatory T Cells, Dendritic Cells, and Circulating Cytokines in Uncomplicated Malaria: Do Different Parasite Species Elicit Similar Host Responses?. Infection and Immunity, 2010, 78, 4763-4772.	2.2	67
122	Naturally Acquired Antibodies to Plasmodium vivax Duffy Binding Protein (DBP) in Rural Brazilian Amazon. American Journal of Tropical Medicine and Hygiene, 2010, 82, 185-193.	1.4	31
123	Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Annals of Tropical Medicine and Parasitology, 2010, 104, 3-23.	1.6	323
124	Genetic variability and natural selection at the ligand domain of the Duffy binding protein in brazilian Plasmodium vivax populations. Malaria Journal, 2010, 9, 334.	2.3	31
125	Evidence-based public health and prospects for malaria control in Brazil. Journal of Infection in Developing Countries, 2010, 4, 533-545.	1.2	17
126	Recurrent Parasitemias and Population Dynamics of Plasmodium vivax Polymorphisms in Rural Amazonia. American Journal of Tropical Medicine and Hygiene, 2009, 81, 961-968.	1.4	72

#	Article	IF	Citations
127	Sporadic Oropouche Infection, Acre, Brazil. Emerging Infectious Diseases, 2009, 15, 348-350.	4.3	32
128	Limited global diversity of the Plasmodium vivax merozoite surface protein 4 gene. Infection, Genetics and Evolution, 2009, 9, 821-826.	2.3	20
129	Sequence diversity and evolutionary dynamics of the dimorphic antigen merozoite surface protein-6 and other Msp genes of Plasmodium falciparum. Gene, 2009, 443, 12-21.	2.2	9
130	Population dynamics of genetically diverse <i>Plasmodium falciparum</i> li>lineages: community-based prospective study in rural Amazonia. Parasitology, 2009, 136, 1097-1105.	1.5	30
131	A closer look at multiple-clone Plasmodium vivax infections: detection methods, prevalence and consequences. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 67-73.	1.6	50
132	Age-Dependent Acquisition of Protective Immunity to Malaria in Riverine Populations of the Amazon Basin of Brazil. American Journal of Tropical Medicine and Hygiene, 2009, 80, 452-459.	1.4	97
133	A Community-based Survey of Human Toxoplasmosis in Rural Amazonia: Seroprevalence, Seroconversion Rate, and Associated Risk Factors. American Journal of Tropical Medicine and Hygiene, 2009, 81, 171-176.	1.4	17
134	Age-dependent acquisition of protective immunity to malaria in riverine populations of the Amazon Basin of Brazil. American Journal of Tropical Medicine and Hygiene, 2009, 80, 452-9.	1.4	63
135	A community-based survey of human toxoplasmosis in rural Amazonia: seroprevalence, seroconversion rate, and associated risk factors. American Journal of Tropical Medicine and Hygiene, 2009, 81, 171-6.	1.4	8
136	Evolution of allelic dimorphism in malarial surface antigens. Heredity, 2008, 100, 103-110.	2.6	29
137	Plasmodium vivax: Microsatellite analysis of multiple-clone infections. Experimental Parasitology, 2008, 120, 330-336.	1.2	26
138	Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparumpopulation divergence. Genome Biology, 2008, 9, R171.	8.8	119
139	Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene, 2008, 410, 105-112.	2.2	103
140	Risk Factors for Dengue Virus Infection in Rural Amazonia: Population-based Cross-sectional Surveys. American Journal of Tropical Medicine and Hygiene, 2008, 79, 485-494.	1.4	37
141	Malaria on the Amazonian Frontier: Transmission Dynamics, Risk Factors, Spatial Distribution, and Prospects for Control. American Journal of Tropical Medicine and Hygiene, 2008, 79, 624-635.	1.4	90
142	Human Toxocariasis in Rural Brazilian Amazonia: Seroprevalence, Risk Factors, and Spatial Distribution. American Journal of Tropical Medicine and Hygiene, 2008, 79, 93-98.	1.4	51
143	Human toxocariasis in rural Brazilian Amazonia: seroprevalence, risk factors, and spatial distribution. American Journal of Tropical Medicine and Hygiene, 2008, 79, 93-8.	1.4	21
144	Risk factors for dengue virus infection in rural Amazonia: population-based cross-sectional surveys. American Journal of Tropical Medicine and Hygiene, 2008, 79, 485-94.	1.4	27

#	Article	IF	CITATIONS
145	Malaria on the Amazonian frontier: transmission dynamics, risk factors, spatial distribution, and prospects for control. American Journal of Tropical Medicine and Hygiene, 2008, 79, 624-35.	1.4	52
146	Origins and Evolution of Antigenic Diversity in Malaria Parasites. Current Molecular Medicine, 2007, 7, 588-602.	1.3	11
147	Antigenic Polymorphism and Naturally Acquired Antibodies to Plasmodium vivax Merozoite Surface Protein 1 in Rural Amazonians. Vaccine Journal, 2007, 14, 1249-1259.	3.1	33
148	Population Structure and Transmission Dynamics of Plasmodium vivaxin Rural Amazonia. Journal of Infectious Diseases, 2007, 195, 1218-1226.	4.0	129
149	Anemia and Iron Deficiency in School Children, Adolescents, and Adults: A Community-Based Study in Rural Amazonia. American Journal of Public Health, 2007, 97, 237-239.	2.7	32
150	Child health and nutrition in the Western Brazilian Amazon: population-based surveys in two counties in Acre State. Cadernos De Saude Publica, 2007, 23, 1283-1293.	1.0	55
151	Prevalence and spatial distribution of intestinal parasitic infections in a rural Amazonian settlement, Acre State, Brazil. Cadernos De Saude Publica, 2007, 23, 427-434.	1.0	57
152	Clinical spectrum of uncomplicated malaria in semi-immune Amazonians: beyond the "symptomatic" vs "asymptomatic" dichotomy. Memorias Do Instituto Oswaldo Cruz, 2007, 102, 341-348.	1.6	47
153	Naturally acquired antibodies to merozoite surface protein (MSP)-1(19) and cumulative exposure to Plasmodium falciparum and Plasmodium vivax in remote populations of the Amazon Basin of Brazil. Memorias Do Instituto Oswaldo Cruz, 2007, 102, 943-951.	1.6	22
154	Plasmodium falciparum: Worldwide sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-2 (MSP-2). Experimental Parasitology, 2007, 115, 32-40.	1.2	56
155	VARIANT-SPECIFIC ANTIBODIES TO MEROZOITE SURFACE PROTEIN 2 AND CLINICAL EXPRESSION OF PLASMODIUM FALCIPARUM MALARIA IN RURAL AMAZONIANS. American Journal of Tropical Medicine and Hygiene, 2007, 76, 1084-1091.	1.4	15
156	Variant-specific antibodies to merozoite surface protein 2 and clinical expression of Plasmodium falciparum malaria in rural Amazonians. American Journal of Tropical Medicine and Hygiene, 2007, 76, 1084-91.	1.4	11
157	Origins of sequence diversity in the malaria vaccine candidate merozoite surface protein-2 (MSP-2) in Amazonian isolates of Plasmodium falciparum. Gene, 2006, 376, 224-230.	2.2	17
158	The Acre Project: the epidemiology of malaria and arthropod-borne virus infections in a rural Amazonian population. Cadernos De Saude Publica, 2006, 22, 1325-1334.	1.0	44
159	Fourteen polymorphic microsatellite DNA markers for the human malaria parasite Plasmodium vivax. Molecular Ecology Notes, 2006, 7, 172-175.	1.7	84
160	Multi-character population study of the vir subtelomeric multigene superfamily of Plasmodium vivax, a major human malaria parasite. Molecular and Biochemical Parasitology, 2006, 149, 10-16.	1.1	31
161	Extense variant gene family repertoire overlap in Western Amazon Plasmodium falciparum isolates. Molecular and Biochemical Parasitology, 2006, 150, 157-165.	1.1	35
162	Sequence Variation in the T-Cell Epitopes of the Plasmodium falciparum Circumsporozoite Protein among Field Isolates Is Temporally Stable: a 5-Year Longitudinal Study in Southern Vietnam. Journal of Clinical Microbiology, 2006, 44, 1229-1235.	3.9	17

#	Article	IF	CITATIONS
163	Factors Associated with Immunoglobulin G Subclass Polarization in Naturally Acquired Antibodies to Plasmodium falciparum Merozoite Surface Proteins: a Cross-Sectional Survey in Brazilian Amazonia. Vaccine Journal, 2006, 13, 810-813.	3.1	20
164	Bottle Feeding and Exposure to Toxocara as Risk Factors for Wheezing Illness among Under-five Amazonian Children: A Population-based Cross-sectional Study. Journal of Tropical Pediatrics, 2006, 53, 119-124.	1.5	34
165	Plasmodium falciparum: IgG subclass antibody response to merozoite surface protein-1 among Amazonian gold miners, in relation to infection status and disease expression. Experimental Parasitology, 2005, 109, 124-134.	1.2	18
166	Mitochondrial Genome Sequences Support Ancient Population Expansion in Plasmodium vivax. Molecular Biology and Evolution, 2005, 22, 1733-1739.	8.9	85
167	Polymorphism of the $Fc\hat{l}^3$ receptor IIA and malaria morbidity. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2005, 01, 5-10.	0.1	19
168	Molecular Analysis of <i>Plasmodium ovale </i> Variants. Emerging Infectious Diseases, 2004, 10, 1235-1240.	4.3	60
169	Genetic Structure ofPlasmodium falciparumPopulations in the Brazilian Amazon Region. Journal of Infectious Diseases, 2004, 190, 1547-1555.	4.0	86
170	pfcrtPolymorphism and the Spread of Chloroquine Resistance inPlasmodium falciparumPopulations across the Amazon Basin. Journal of Infectious Diseases, 2004, 190, 417-424.	4.0	73
171	Antigenic Diversity and Immune Evasion by Malaria Parasites. Vaccine Journal, 2004, 11, 987-995.	2.6	100
172	Rapid epidemiologic assessment of glucose-6-phosphate dehydrogenase deficiency in malaria-endemic areas in Southeast Asia using a novel diagnostic kit. Tropical Medicine and International Health, 2004, 9, 615-623.	2.3	44
173	Plasmodium falciparum: sequence diversity and antibody recognition of the Merozoite surface protein-2 (MSP-2) in Brazilian Amazonia. Experimental Parasitology, 2004, 108, 114-125.	1.2	14
174	Wheezing conditions in early childhood: prevalence and risk factors in the city of São Paulo, Brazil. Bulletin of the World Health Organization, 2004, 82, 516-22.	3.3	32
175	Sequence diversity in the amino-terminal region of the malaria-vaccine candidate serine repeat antigen in natural Plasmodium falciparum populations. Parasitology International, 2003, 52, 117-131.	1.3	12
176	Sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-1 (MSP-1) of Plasmodium falciparum. Gene, 2003, 304, 65-75.	2.2	95
177	Genetic relatedness of Plasmodium falciparum isolates and the origin of allelic diversity at the merozoite surface protein-1 (MSP-1) locus in Brazil and Vietnam. Malaria Journal, 2003, 2, 24.	2.3	16
178	Sex-specific and blood meal-induced proteins of Anopheles gambiae midguts: analysis by two-dimensional gel electrophoresis. Malaria Journal, 2003, 2, 1.	2.3	96
179	Differential Recognition of Plasmodium falciparum Merozoite Surface Protein 2 Variants by Antibodies from Malaria Patients in Brazil. Vaccine Journal, 2003, 10, 973-976.	3.1	15
180	Microsatellite Characterization of Plasmodium falciparum from Cerebral and Uncomplicated Malaria Patients in Southern Vietnam. Journal of Clinical Microbiology, 2002, 40, 1854-1857.	3.9	20

#	Article	IF	CITATIONS
181	Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16348-16353.	7.1	135
182	Intestinal parasitic infections in young children in São Paulo, Brazil: prevalences, temporal trends and associations with physical growth. Annals of Tropical Medicine and Parasitology, 2002, 96, 503-512.	1.6	36
183	Wide distribution of Plasmodium ovale in Myanmar. Tropical Medicine and International Health, 2002, 7, 231-239.	2.3	68
184	Genetic diversity and differentiation in natural Plasmodium falciparum populations inferred by molecular typing of the merozoite surface proteins 1 and 2. Revista Da Sociedade Brasileira De Medicina Tropical, 2002, 35, 527-530.	0.9	4
185	Diversity in the thrombospondin-related adhesive protein gene (TRAP) of Plasmodium vivax. Gene, 2001, 268, 97-104.	2.2	26
186	Duffy blood group genotypes among malaria patients in Rondônia, Western Brazilian Amazon. Revista Da Sociedade Brasileira De Medicina Tropical, 2001, 34, 591-595.	0.9	12
187	Geographical patterns of allelic diversity in the Plasmodium falciparum malaria-vaccine candidate, merozoite surface protein-2. Annals of Tropical Medicine and Parasitology, 2001, 95, 117-132.	1.6	25
188	Risk factors for toxoplasmic encephalitis in HIV-infected patients: a case-control study in Brazil. Annals of Tropical Medicine and Parasitology, 2001, 95, 587-593.	1.6	0
189	Sequence Diversity and Linkage Disequilibrium within the Merozoite Surface Protein-1 (Msp-1) Locus of Plasmodium falciparum: A Longitudinal Study in Brazil. Journal of Eukaryotic Microbiology, 2001, 48, 433-439.	1.7	24
190	Differential Antibody Recognition of Four Allelic Variants of the Merozoite Surface Protein-2 (MSP-2) of Plasmodium falciparum. Journal of Eukaryotic Microbiology, 2001, 48, 556-564.	1.7	18
191	MEIOTIC RECOMBINATION, CROSS-REACTIVITY, AND PERSISTENCE IN PLASMODIUM FALCIPARUM. Evolution; International Journal of Organic Evolution, 2001, 55, 1299-1307.	2.3	24
192	Risk factors for toxoplasmic encephalitis in HIV-infected patients: a case–control study in Brazil. Annals of Tropical Medicine and Parasitology, 2001, 95, 587-593.	1.6	16
193	MEIOTIC RECOMBINATION, CROSS-REACTIVITY, AND PERSISTENCE IN PLASMODIUM FALCIPARUM. Evolution; International Journal of Organic Evolution, 2001, 55, 1299.	2.3	4
194	Geographical patterns of allelic diversity in the Plasmodium falciparum malaria-vaccine candidate, merozoite surface protein-2. Annals of Tropical Medicine and Parasitology, 2001, 95, 117-132.	1.6	46
195	Low sensitivity of polymerase chain reaction for diagnosis of tuberculous meningitis in southeastern Brazil. Revista Da Sociedade Brasileira De Medicina Tropical, 2001, 34, 389-393.	0.9	15
196	Temporal and spatial distribution of the variants of merozoite surface protein-1 (MSP-1) inPlasmodium falciparumpopulations in Brazil. Annals of Tropical Medicine and Parasitology, 2000, 94, 675-688.	1.6	19
197	The Origin of Antigenic Diversity in Plasmodium falciparum. Parasitology Today, 2000, 16, 390-396.	3.0	76
198	Tendência secular das parasitoses intestinais na infância na cidade de São Paulo (1984-1996). Revista De Saude Publica, 2000, 34, 73-82.	1.7	60

#	Article	IF	Citations
199	Assessing the effects of global warming and local social and economic conditions on the malaria transmission. Revista De Saude Publica, 2000, 34, 214-222.	1.7	33
200	How prevalent is Plasmodium malariae in RondÃ'nia, Western Brazilian Amazon?. Revista Da Sociedade Brasileira De Medicina Tropical, 2000, 33, 489-492.	0.9	50
201	Microsatellite Markers Reveal a Spectrum of Population Structures in the Malaria Parasite Plasmodium falciparum. Molecular Biology and Evolution, 2000, 17, 1467-1482.	8.9	693
202	Selection and genetic drift of polymorphisms within the merozoite surface protein-1 gene of Plasmodium falciparum. Gene, 2000, 241, 325-331.	2.2	29
203	Sequence diversity of serine repeat antigen gene exon II of Plasmodium falciparum in worldwide collected wild isolates. Southeast Asian Journal of Tropical Medicine and Public Health, 2000, 31, 808-17.	1.0	5
204	The seroprevalence of hepatitis B and C in an Amerindian population in the southwestern Brazilian Amazon. Revista Da Sociedade Brasileira De Medicina Tropical, 1999, 32, 299-302.	0.9	26
205	A Plasmodium vivax Vaccine Candidate Displays Limited Allele Polymorphism, Which Does Not Restrict Recognition by Antibodies. Molecular Medicine, 1999, 5, 459-470.	4.4	43
206	How Prevalant are Plasmodium ovale and P. malariae in East Asia?. Parasitology Today, 1999, 15, 422-426.	3.0	60
207	Allelic Diversity and Antibody Recognition of (i) Plasmodium falciparum (i) Merozoite Surface Protein 1 during Hypoendemic Malaria Transmission in the Brazilian Amazon Region. Infection and Immunity, 1999, 67, 5906-5916.	2.2	46
208	A Plasmodium vivax vaccine candidate displays limited allele polymorphism, which does not restrict recognition by antibodies. Molecular Medicine, 1999, 5, 459-70.	4.4	19
209	Stable Patterns of Allelic Diversity at the Merozoite Surface Protein-1 Locus of Plasmodium falciparum in Clinical Isolates from Southern Vietnam. Journal of Eukaryotic Microbiology, 1998, 45, 131-136.	1.7	37
210	High prevalence of Plasmodium malariae and Plasmodium ovale in malaria patients along the Thai-Myanmar border, as revealed by acridine orange staining and PCR-based diagnoses. Tropical Medicine and International Health, 1998, 3, 304-312.	2.3	86
211	The IgG subclass distribution acquired antibodies to Plasmodium falciparum , in relation to malaria exposure of naturally and severity. Annals of Tropical Medicine and Parasitology, 1998, 92, 245-256.	1.6	27
212	Allelic Diversity in the Merozoite Surface Protein-1 and Epidemiology of Multiple-Clone Plasmodium falciparum Infections in Northern Tanzania. Journal of Parasitology, 1998, 84, 1286.	0.7	23
213	The IgG-subclass distribution of naturally acquired antibodies to <i>Plasmodium falciparum</i> , in relation to malaria exposure and severity. Annals of Tropical Medicine and Parasitology, 1998, 92, 245-256.	1.6	17
214	Allelic Diversity at the Merozoite Surface Protein-1 (MSP-1) Locus in Natural Plasmodium falciparum Populations: a Brief Overview. Memorias Do Instituto Oswaldo Cruz, 1998, 93, 631-638.	1.6	19
215	Allelic diversity at the merozoite surface protein-1 locus of Plasmodium falciparum in clinical isolates from the southwestern Brazilian Amazon American Journal of Tropical Medicine and Hygiene, 1998, 59, 474-480.	1.4	43
216	A proteÃna principal da superfÃcie de merozoÃtos (MSP-1) de Plasmodium falciparum: diversidade alélica e reconhecimento imune. Revista Da Sociedade Brasileira De Medicina Tropical, 1998, 31, 395-397.	0.9	1

#	Article	IF	Citations
217	Allelic diversity in the merozoite surface protein-1 and epidemiology of multiple-clone Plasmodium falciparum infections in northern Tanzania. Journal of Parasitology, 1998, 84, 1286-9.	0.7	11
218	Humoral immune response to the 72 kDa heat shock protein from Plasmodium falciparum in populations at hypoendemic areas of malaria in western Brazilian Amazon. Acta Tropica, 1997, 64, 155-166.	2.0	9
219	How safe are asexual blood-stage malaria vaccines?. International Journal for Parasitology, 1997, 27, 449-451.	3.1	2
220	Plasmodium falciparum: Allelic Variation in the Merozoite Surface Protein 1 Gene in Wild Isolates from Southern Vietnam. Experimental Parasitology, 1997, 86, 45-57.	1.2	71
221	Dietary Iron Supplementation Does Not Aggravate Experimental Malaria in Young Rats. Journal of Nutrition, 1996, 126, 467-475.	2.9	10
222	Malaria vaccine trials: The missing qualitative data. Immunology and Cell Biology, 1996, 74, 301-305.	2.3	8
223	Discontinuity Indices of Exclusive Breastfeeding Estimated by Probit Analysis of Current Status Data. International Journal of Epidemiology, 1996, 25, 459-460.	1.9	0
224	Rapid Epidemiologic Assessment of Breastfeeding Practices: Probit Analysis of Current Status Data. Journal of Tropical Pediatrics, 1996, 42, 50-53.	1.5	11
225	The Isotype Composition and Avidity of Naturally Acquired Anti-Plasmodium falciparum Antibodies: Differential Patterns in Clinically Immune Africans and Amazonian Patients. American Journal of Tropical Medicine and Hygiene, 1996, 55, 315-323.	1.4	64
226	Hypoendemic Malaria in Rondonia (Brazil, Western Amazon Region): Seasonal Variation and Risk Groups in an Urban Locality. American Journal of Tropical Medicine and Hygiene, 1996, 55, 32-38.	1.4	105
227	The assessment of antibody affinity distribution by thiocyanate elution: a simple dose-response approach. Journal of Immunological Methods, 1995, 187, 297-305.	1.4	45
228	Antibody response against Plasmodium falciparum exoantigens and somatic antigens: A longitudinal survey in a rural community in Rondônia, Western Brazilian Amazon. Acta Tropica, 1994, 57, 35-46.	2.0	10
229	The median age of primary malaria infection in an Amazonian community: Probit analysis of cross-sectional data. Acta Tropica, 1994, 58, 73-78.	2.0	6
230	Unstable Hypoendemic Malaria in Rondonia (Western Amazon Region, Brazil): Epidemic Outbreaks and Work-Associated Incidence in an Agro-Industrial Rural Settlement. American Journal of Tropical Medicine and Hygiene, 1994, 51, 16-25.	1.4	104
231	Characterization of Naturally Acquired Human IgG Responses against the N-Terminal Region of the Merozoite Surface Protein 1 of Plasmodium vivax. American Journal of Tropical Medicine and Hygiene, 1994, 51, 68-76.	1.4	32
232	Anaemia, iron deficiency and malaria in a rural community in Brazilian Amazon. European Journal of Clinical Nutrition, 1994, 48, 326-32.	2.9	18
233	The prevalence of infection by intestinal parasites in an urban slum in $S\tilde{A}\pounds$ o Paulo, Brazil. The Journal of Tropical Medicine and Hygiene, 1994, 97, 121-7.	0.2	8
234	Malaria sporozoite rates in Anopheles mosquitoes: theoretical comparability of salivary gland dissection with the ELISA detection method. Medical and Veterinary Entomology, 1993, 7, 304-306.	1.5	2

#	ARTICLE	IF	CITATIONS
235	Prevalence and levels of IgG and IgM antibodies against Plasmodium falciparum and P. vivax in blood donors from Rondônia, Brazilian Amazon. Memorias Do Instituto Oswaldo Cruz, 1993, 88, 263-269.	1.6	7
236	Longitudinal Study of Naturally Acquired Humoral Immune Responses against the Merozoite Surface Protein 1 of Plasmodium vivax in Patients from Rondonia, Brazil. American Journal of Tropical Medicine and Hygiene, 1993, 49, 383-392.	1.4	18
237	Malaria diagnosis by fluorescence microscopy. Parasitology Today, 1992, 8, 271.	3.0	1
238	Human IgG responses against the N-terminal region of Merozoite Surface Protein 1 of Plasmodium vivax. Memorias Do Instituto Oswaldo Cruz, 1992 , 87 , 77 - 84 .	1.6	5
239	Malaria seroepidemiology: comparison between indirect fluorescent antibody test and enzyme immunoassay using bloodspot eluates. Memorias Do Instituto Oswaldo Cruz, 1992, 87, 205-208.	1.6	17
240	Intestinal parasites among Karitiana Indians from Rondônia State, Brazil. Revista Do Instituto De Medicina Tropical De Sao Paulo, 1992, 34, 223-225.	1.1	17
241	Second form in a segment of the Merozoite Surface Protein 1 gene of Plasmodium vivax among isolates from RondA nia (Brazil). Molecular and Biochemical Parasitology, 1992, 54, 121-124.	1.1	19
242	Prevalência e intensidade de infecção por Ascaris lumbricoides em amostra populacional urbana (São) Tj ET	Qq0,00 rş	зВŢ/Overlock
243	Using a microplate reader to quantify DOT immunobinding assays. Memorias Do Instituto Oswaldo Cruz, 1991, 86, 467-468.	1.6	0
244	An open dataset of Plasmodium vivax genome variation in 1,895 worldwide samples. Wellcome Open Research, 0, 7, 136.	1.8	16
245	Prolonged Breastfeeding and the Risk of Plasmodium vivax Infection and Clinical Malaria in Early Childhood. Pediatric Infectious Disease Journal, 0, Publish Ahead of Print, .	2.0	0
246	High-throughput Plasmodium falciparum hrp2 and hrp3 gene deletion typing by digital PCR to monitor malaria rapid diagnostic test efficacy. ELife, $0,11,1$	6.0	25