List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4930116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental protocols for the assessment of redox thermodynamics of nonstoichiometric oxides: A case study of YMnO _{3â€<i>l´</i>} . Journal of the American Ceramic Society, 2022, 105, 4375-4386.	1.9	6
2	Phase Behavior and Superprotonic Conductivity in the System (1– <i>x</i>)CsH ₂ PO ₄ – <i>x</i> H ₃ PO ₄ : Discovery of Off-Stoichiometric α-[Cs _{1–<i>x</i>} H <i>_x</i>]H ₂ PO ₄ . Chemistry of Materials, 2022, 34, 1809-1820.	3.2	5
3	Broad Applicability of Electrochemical Impedance Spectroscopy to the Measurement of Oxygen Nonstoichiometry in Mixed Ion and Electron Conductors. ACS Applied Materials & Interfaces, 2022, 14, 19629-19643.	4.0	2
4	Electrifying membranes to deliver hydrogen. Science, 2022, 376, 348-349.	6.0	16
5	Thermodynamic assessment of nonstoichiometric oxides for solar thermochemical fuel production. Solar Energy, 2022, 241, 504-514.	2.9	8
6	Outstanding Properties and Performance of CaTi0.5Mn0.5O3–δ for Solar-Driven Thermochemical Hydrogen Production. Matter, 2021, 4, 688-708.	5.0	45
7	Local Multimodal Electroâ€Chemicalâ€Structural Characterization of Solidâ€Electrolyte Grain Boundaries. Advanced Energy Materials, 2021, 11, 2003309.	10.2	7
8	A humidity-controlled precipitation technique enabling discovery of Rb3(H1.5PO4)2. Journal of Solid State Chemistry, 2021, 296, 121951.	1.4	1
9	Roadmap on inorganic perovskites for energy applications. JPhys Energy, 2021, 3, 031502.	2.3	40
10	Impact of La doping on the thermochemical heat storage properties of CaMnO3-δ. Journal of Energy Storage, 2021, 40, 102793.	3.9	20
11	Hidden Complexity in the Chemistry of Ammonolysis-Derived "γ-Mo ₂ Nâ€ŧ An Overlooked Oxynitride Hydride. Chemistry of Materials, 2021, 33, 6671-6684.	3.2	8
12	High-throughput characterization of Lu-doped zirconia. Solid State Ionics, 2021, 368, 115698.	1.3	2
13	A review of defect structure and chemistry in ceria and its solid solutions. Chemical Society Reviews, 2020, 49, 554-592.	18.7	298
14	Insensitivity of the extent of surface reduction of ceria on termination: comparison of (001), (110), and (111) faces. MRS Communications, 2020, 10, 636-641.	0.8	3
15	Structure and Properties of Cs ₇ (H ₄ PO ₄)(H ₂ PO ₄) ₈ : A New Superprotonic Solid Acid Featuring the Unusual Polycation (H ₄ PO ₄) ⁺ . Journal of the American Chemical Society, 2020, 142,	6.6	9
16	Accelerating oxygen surface exchange. Nature Catalysis, 2020, 3, 863-864.	16.1	0
17	Oxygen Affinity: The Missing Link Enabling Prediction of Proton Conductivities in Doped Barium Zirconates. Chemistry of Materials, 2020, 32, 7292-7300.	3.2	25
18	Favorable Redox Thermodynamics of SrTi _{0.5} Mn _{0.5} O _{3â^î^} in Solar Thermochemical Water Splitting. Chemistry of Materials, 2020, 32, 9335-9346.	3.2	42

#	Article	IF	CITATIONS
19	Combinatorial Approach for Single-Crystalline TaON Growth: Epitaxial β-TaON (100)/α-Al2O3 (012). ACS Applied Electronic Materials, 2020, 2, 3571-3576.	2.0	3
20	Quantifying leakage fields at ionic grain boundaries using off-axis electron holography. Journal of Applied Physics, 2020, 128, .	1.1	2
21	Solid Acid Electrochemical Cell for the Production of Hydrogen from Ammonia. Joule, 2020, 4, 2338-2347.	11.7	30
22	Liln ₂ SbO ₆ : A New Rutile-Related Structure Type with Unique Ion Channels. Chemistry of Materials, 2020, 32, 4785-4794.	3.2	10
23	Unexpected trends in the enhanced Ce ³⁺ surface concentration in ceria–zirconia catalyst materials. Journal of Materials Chemistry A, 2020, 8, 9850-9858.	5.2	12
24	Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography. Nature Materials, 2020, 19, 887-893.	13.3	72
25	The favourable thermodynamic properties of Fe-doped CaMnO ₃ for thermochemical heat storage. Journal of Materials Chemistry A, 2020, 8, 8503-8517.	5.2	42
26	Crystal structure, conductivity, and phase stability of Cs3(H1.5PO4)2 under controlled humidity. Solid State Ionics, 2020, 349, 115291.	1.3	7
27	Phase Behavior and Superionic Transport Characteristics of (M _{<i>x</i>} Rb _{1–<i>x</i>}) ₃ H(SeO ₄) ₂ (M = K)	Tjæ₽Qq1 1	0.784314
28	Fe-doped CaMnO3 for thermochemical heat storage application. AIP Conference Proceedings, 2019, , .	0.3	11
29	Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy and Environmental Science, 2019, 12, 206-215.	15.6	257
30	Hydrogen oxidation kinetics on platinum-palladium bimetallic thin films for solid acid fuel cells. APL Materials, 2019, 7, 013201.	2.2	4
31	(Invited) Insights into Proton Transport in Superprotonic Solid Acids. ECS Meeting Abstracts, 2019, , .	0.0	Ο
32	(Invited) Zirconia Doped Ceria As a Mixed Ion and Electron Conductor. ECS Meeting Abstracts, 2019, , .	0.0	0
33	(Invited) Thermochemical Properties of Non-Stoichiometric Oxides for Solar Fuel Generation. ECS Meeting Abstracts, 2019, , .	0.0	0
34	Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 2018, 3, 202-210.	19.8	587
35	Out-of-Plane Ionic Conductivity Measurement Configuration for High-Throughput Experiments. ACS Combinatorial Science, 2018, 20, 443-450.	3.8	4
36	Atomic layer deposition of Pt@CsH2PO4 for the cathodes of solid acid fuel cells. Electrochimica Acta, 2018, 288, 12-19.	2.6	21

#	Article	IF	CITATIONS
37	Suppression of atom motion and metal deposition in mixed ionic electronic conductors. Nature Communications, 2018, 9, 2910.	5.8	148
38	An Easily Fabricated Low-Cost Potentiostat Coupled with User-Friendly Software for Introducing Students to Electrochemical Reactions and Electroanalytical Techniques. Journal of Chemical Education, 2018, 95, 1658-1661.	1.1	43
39	In-situ Electron Holography Study of Grain Boundaries in Cerium Oxide. Microscopy and Microanalysis, 2018, 24, 1466-1467.	0.2	0
40	Gas-phase vs. material-kinetic limits on the redox response of nonstoichiometric oxides. Physical Chemistry Chemical Physics, 2017, 19, 7420-7430.	1.3	18
41	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	1.9	23
42	Highâ€ŧemperature structural stability of ceriaâ€based inverse opals. Journal of the American Ceramic Society, 2017, 100, 2659-2668.	1.9	4
43	A piezomicrobalance system for highâ€ŧemperature mass relaxation characterization of metal oxides: A case study of Prâ€doped ceria. Journal of the American Ceramic Society, 2017, 100, 1161-1171.	1.9	12
44	Impact of enhanced oxide reducibility on rates of solar-driven thermochemical fuel production. MRS Communications, 2017, 7, 873-878.	0.8	26
45	Chemical surface exchange of oxygen on CeO _{2â^î^} in an O ₂ /H ₂ O atmosphere. Physical Chemistry Chemical Physics, 2017, 19, 29287-29293.	1.3	1
46	Interplay of material thermodynamics and surface reaction rate on the kinetics of thermochemical hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 16932-16945.	3.8	33
47	Revealing Local Dynamics of the Protonic Conductor CsH(PO ₃ H) by Solid-State NMR Spectroscopy and First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 27830-27838.	1.5	6
48	Bulk Properties of the Oxygen Reduction Catalyst SrCo _{0.9} Nb _{0.1} O _{3â^î^} . Chemistry of Materials, 2016, 28, 2599-2608.	3.2	24
49	Maximizing fuel production rates in isothermal solar thermochemical fuel production. Applied Energy, 2016, 183, 1098-1111.	5.1	35
50	Extreme high temperature redox kinetics in ceria: exploration of the transition from gas-phase to material-kinetic limitations. Physical Chemistry Chemical Physics, 2016, 18, 21554-21561.	1.3	26
51	Implications of Exceptional Material Kinetics on Thermochemical Fuel Production Rates. Energy Technology, 2016, 4, 764-770.	1.8	23
52	Platinum-decorated carbon nanotubes for hydrogen oxidation and proton reduction in solid acid electrochemical cells. Chemical Science, 2015, 6, 1570-1577.	3.7	32
53	Probing the reaction pathway in (La _{0.8} Sr _{0.2}) _{0.95} MnO _{3+δ} using libraries of thin film microelectrodes. Journal of Materials Chemistry A, 2015, 3, 19330-19345.	5.2	22
54	Phase behavior and superprotonic conductivity in the Cs _{1â^'x} Rb _x H ₂ PO ₄ and Cs _{1â^'x} K _x H ₂ PO ₄ systems. Journal of Materials Chemistry A, 2014, 2, 204-214.	5.2	34

#	Article	IF	CITATIONS
55	An electrical conductivity relaxation study of oxygen transport in samarium doped ceria. Journal of Materials Chemistry A, 2014, 2, 2405-2417.	5.2	82
56	Ceria–Zirconia Solid Solutions (Ce _{1–<i>x</i>} Zr _{<i>x</i>} O _{2â^îî} ,) Tj E Materials, 2014, 26, 6073-6082.	TQq0 0 0 r 3.2	gBT /Overlock 170
57	Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. Journal of Materials Chemistry A, 2014, 2, 13612-13623.	5.2	157
58	Dynamic Nuclear Polarization NMR of Low-γ Nuclei: Structural Insights into Hydrated Yttrium-Doped BaZrO ₃ . Journal of Physical Chemistry Letters, 2014, 5, 2431-2436.	2.1	60
59	High-temperature isothermal chemical cycling for solar-driven fuel production. Physical Chemistry Chemical Physics, 2013, 15, 17084.	1.3	117
60	Proton trapping in yttrium-doped barium zirconate. Nature Materials, 2013, 12, 647-651.	13.3	297
61	High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells. Energy and Environmental Science, 2012, 5, 8682.	15.6	83
62	High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes. Nature Materials, 2012, 11, 155-161.	13.3	288
63	Highly Enhanced Concentration and Stability of Reactive Ce ³⁺ on Doped CeO ₂ Surface Revealed In Operando. Chemistry of Materials, 2012, 24, 1876-1882.	3.2	169
64	The thermodynamics and kinetics of the dehydration of CsH2PO4 studied in the presence of SiO2. Solid State Ionics, 2012, 213, 63-71.	1.3	24
65	High-temperature phase behavior in the Rb3H(SO4)2–RbHSO4 pseudo-binary system and the new compound Rb5H3(SO4)4. Solid State Ionics, 2012, 213, 53-57.	1.3	8
66	Unusual decrease in conductivity upon hydration in acceptor doped, microcrystalline ceria. Physical Chemistry Chemical Physics, 2011, 13, 6442.	1.3	25
67	Platinum thin film anodes for solid acid fuel cells. Energy and Environmental Science, 2011, 4, 4230.	15.6	25
68	Unraveling the defect chemistry and proton uptake of yttrium-doped barium zirconate. Scripta Materialia, 2011, 65, 102-107.	2.6	69
69	Phase transformation and hysteresis behavior in Cs1â^'xRbxH2PO4. Solid State Ionics, 2010, 181, 173-179.	1.3	24
70	A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO ₂ mitigation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3269-3294.	1.6	371
71	Engineering the Next Generation of Solid State Proton Conductors: Synthesis and Properties of Ba _{3â^'<i>x</i>} K _{<i>x</i>} H _{<i>x</i>} (PO ₄) ₂ . Chemistry of Materials, 2010, 22, 1186-1194.	3.2	12
72	Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity. Journal of Materials Chemistry, 2010, 20, 8158.	6.7	197

#	Article	IF	CITATIONS
73	High-Flux Solar-Driven Thermochemical Dissociation of CO ₂ and H ₂ O Using Nonstoichiometric Ceria. Science, 2010, 330, 1797-1801.	6.0	1,292
74	Polymer sphere lithography for solid oxide fuel cells: a route to functional, well-defined electrode structures. Journal of Materials Chemistry, 2010, 20, 2190.	6.7	24
75	Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane from H ₂ 0 and CO ₂ . ChemSusChem, 2009, 2, 735-739.	3.6	249
76	High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate. Chemistry of Materials, 2009, 21, 2755-2762.	3.2	427
77	Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities. Physical Chemistry Chemical Physics, 2009, 11, 8144.	1.3	87
78	Geometrically asymmetric electrodes for probing electrochemical reaction kinetics: a case study of hydrogen at the Pt–CsH2PO4 interface. Physical Chemistry Chemical Physics, 2009, 11, 8349.	1.3	20
79	A Thermally Self-Sustaining Miniature Solid Oxide Fuel Cell. Journal of Fuel Cell Science and Technology, 2009, 6, .	0.8	20
80	From Laboratory Breakthrough to Technological Realization: The Development Path for Solid Acid Fuel Cells. Electrochemical Society Interface, 2009, 18, 53-59.	0.3	33
81	Electrochemical behavior of ceria with selected metal electrodes. Solid State Ionics, 2008, 179, 1036-1041.	1.3	52
82	Inverse opal ceria–zirconia: architectural engineering for heterogeneous catalysis. Energy and Environmental Science, 2008, 1, 484.	15.6	37
83	Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt SDC BSCF. Physical Chemistry Chemical Physics, 2008, 10, 865-883.	1.3	44
84	Defect Chemistry of Yttrium-Doped Barium Zirconate: A Thermodynamic Analysis of Water Uptake. Chemistry of Materials, 2008, 20, 6352-6357.	3.2	169
85	Towards Understanding Electrocatalysis in CsH2PO4-Based Fuel Cells: Platinum and Palladium Thin Film Electrodes. ECS Transactions, 2008, 13, 57-62.	0.3	6
86	Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C. Journal of Materials Chemistry, 2007, 17, 3182.	6.7	81
87	Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discussions, 2007, 134, 17-39.	1.6	272
88	Processing of yttrium-doped barium zirconate for high proton conductivity. Journal of Materials Research, 2007, 22, 1322-1330.	1.2	363
89	Entropy Evaluation of the Superprotonic Phase of CsHSO4:  Pauling's Ice Rules Adjusted for Systems Containing Disordered Hydrogen-Bonded Tetrahedra. Chemistry of Materials, 2007, 19, 270-279.	3.2	15
90	Alcohol Fuel Cells at Optimal Temperatures. Electrochemical and Solid-State Letters, 2006, 9, A261.	2.2	51

#	Article	IF	CITATIONS
91	Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO. Journal of the American Ceramic Society, 2005, 88, 2362-2368.	1.9	524
92	Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria. Journal of the American Ceramic Society, 2005, 88, 2979-2997.	1.9	318
93	Thermodynamic, thermomechanical, and electrochemical evaluation of CsHSO4. Solid State Ionics, 2005, 176, 127-133.	1.3	54
94	Superprotonic phase transition ofCsHSO4: A molecular dynamics simulation study. Physical Review B, 2005, 72, .	1.1	40
95	Low-Temperature Crystallization of Sol-Gel Processed Pb0.5Ba0.5TiO3: Powders and Oriented Thin Films. Journal of the American Ceramic Society, 2004, 87, 1388-1391.	1.9	8
96	A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431, 170-173.	13.7	2,737
97	High-Performance Solid Acid Fuel Cells Through Humidity Stabilization. Science, 2004, 303, 68-70.	6.0	440
98	Preparation of (Pb,Ba)TiO3 powders and highly oriented thin films by a sol-gel process. Journal of Materials Research, 2004, 19, 1492-1498.	1.2	25
99	Fuel cell materials and componentsâ~†â~†â~†The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh Acta Materialia, 2003, 51, 5981-6000.	3.8	1,068
100	High-Temperature Behavior of CsH2PO4under Both Ambient and High Pressure Conditions. Chemistry of Materials, 2003, 15, 727-736.	3.2	154
101	Instability of Sulfate and Selenate Solid Acids in Fuel Cell Environments. Energy & Fuels, 2003, 17, 210-215.	2.5	57
102	Hydrothermal synthesis of KNbO ₃ and NaNbO ₃ powders. Journal of Materials Research, 2003, 18, 338-345.	1.2	162
103	Comparison of Titanium Precursors in the Sol-Gel Synthesis of Pb0.5Ba0.5TiO3 Powders and Thin Films. Materials Research Society Symposia Proceedings, 2003, 784, 11361.	0.1	0
104	Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate. Journal of Materials Research, 2002, 17, 3168-3176.	1.2	75
105	Parametric Optimization of a Sol-Gel Process for the Synthesis of Highly-Oriented (Pb, Ba)TiO3 Thin Films. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	1
106	High-temperature phase transitions in K3H(SO4)2. Solid State Ionics, 2001, 145, 179-184.	1.3	34
107	Solid acids as fuel cell electrolytes. Nature, 2001, 410, 910-913.	13.7	833
108	Polymer Solid Acid Composite Membranes for Fuel-Cell Applications. Journal of the Electrochemical Society, 2000, 147, 3610.	1.3	61

#	Article	IF	CITATIONS
109	Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State lonics, 1999, 125, 355-367.	1.3	602
110	The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. Journal of Materials Research, 1998, 13, 1576-1595.	1.2	219
111	Ionic Conductivity in Laco _{1-X} Mg _X 0 _{3-Î′} : A Potential Cathode Material for Solid Oxide Fuel Cells. Materials Research Society Symposia Proceedings, 1995, 393, 43.	0.1	Ο
112	The Kinetics of Ordering in Gadolinium Zirconate: an Unusual Oxygen Ion Conductor. Materials Research Society Symposia Proceedings, 1995, 398, 599.	0.1	4
113	Synthesis, Structure, and Ionic Conductivity of K3NdSi6O15. Materials Research Society Symposia Proceedings, 1990, 210, 645.	0.1	3
114	Neutron Rietveld Analysis of Anion and Cation Disorder in the Fast-Ion Conducting Pyrochlore System Y ₂ (Zr _x Ti _{1â~'x}) ₂ O ₇ . Materials Research Society Symposia Proceedings, 1989, 166, 81.	0.1	21
115	A Convergent Understanding of Charged Defects. Accounts of Materials Research, 0, , .	5.9	5